
Chapter 1

Introduction and basic

concepts

1.1 Dynamical systems

Definition 1.1. A dynamical system is a triple (X,G,S) defined as the
action S of a semigroup G with identity e on a set X, that is a function

S : G⇥X ! X

such that S(e, x) = x for all x 2 X, and S(g1,S(g2, x)) = S(g1g2, x) for all
g1, g2 2 G and all x 2 X.

In the following, the set X is assumed to be a locally compact connected
metric space.

Two main examples of dynamical system are given in the following def-
initions.

Definition 1.2. A discrete-time dynamical system is defined by the action
of N0 on a set X defined through the iterations of a map T : X ! X by

S(n, x) = Tn(x),

where Tn = T � · · · � T is the composition of T with itself n times. A
discrete-time dynamical system is denoted by the triple (X,N0, T ).

If the map T is invertible, the system can be extended to the action
of the group Z on X. Examples of a discrete-time dynamical system are
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8 CHAPTER 1. INTRODUCTION AND BASIC CONCEPTS

sequences defined by a recurrence relation. Let {xn} be a sequence of real
numbers defined by

x0 = a 2 R, xn = f(xn�1) 8n � 1,

for a real-valued function f . This corresponds to the dynamical system
defined on X = R through the iterations of the map f : R ! R, that is
xn = fn(a).

Definition 1.3. A continuous-time dynamical system is defined by the ac-
tion of R on a set X ⇢ Rn defined through the flow �t(x) of an autonomous
ordinary di↵erential equation ẋ(t) = F (x), that is

S(t, x) = �t(x),

where �t(x) is the solution of an ordinary di↵erential equation1 with initial
condition x, and �t : X ! X is a continuous function. A continuous-time
dynamical system is denoted by the triple (X,R,�).

Definiton 1.3 includes the case of non-autonomous di↵erential equations
by using the standard procedure of “enlarging” the space of variables. Let
F : R ⇥ Rn ! Rn define a time-dependent vector field F (t, x) on Rn and
consider the Cauchy problem

(
ẋ(t) = F (t, x(t))

x(0) = x0

If we let y = (x, t) 2 Rn+1 and F̃ (y) = (F (t, x), 1) be a vector field on
Rn+1, the previous non-autonomous Cauchy problem is equivalent to the
autonomous problem (

ẏ(t) = F̃ (y(t))

y(0) = (x0, 0)

A similar procedure can be applied to the case of sequences defined by a
recurrence relation depending on n.

Analogously, it is known that ordinary di↵erential equations of order
greater than one can be reduced to systems of ordinary di↵erential equations
of order one, hence again included in Definition 1.3. The same is true for the
discrete-time case. The following example shows how the procedure works.

1
All ordinary di↵erential equations we consider are assumed to have the property of

local uniqueness of solutions and time-interval of existence of solutions given by R up to

reparametrization.
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Example 1.1. Let us consider the sequence {xn} defined as follows

x1 = 0, x2 = 1, x3 = 1, xn = xn�1 + 2n�3 xn�2 + xn�3 8n � 4.

We define the vector y
n
= (xn, xn�1, xn�2, n) 2 R4. Then using the previous

recurrence we have

y
n+1

=
⇣
xn + 2n�2 xn�1 + xn�2 , xn , xn�1 , n+ 1

⌘
= T (y

n
) 8n � 3

with initial condition set to be y3 = (1, 1, 0, 3) and T : R4 ! R4 defined by

T (a, b, c, d) =
⇣
a+ 2d�2 b+ c , a , b , d+ 1

⌘
.

The idea of an action of a semigroup on a set X can be used in more
abstract contexts. Here we show only one example of algebraic nature that
will be studied in more details in part IV of this book.

Example 1.2. Let X be a group, G be R, and consider the action S on X
given by multiplication for a one-parameter subgroup of X. For example, if
X = SL(2,R) the action of R defined by

S(t, x) = x

✓
et/2 0
0 e�t/2

◆
2 SL(2,R)

represents the geodesic flow on the hyperbolic Poincaré half-plane (see Chap-
ter 9).

1.2 Basic notions

Definition 1.4. Given a dynamical system (X,G,S), the orbit of a point
x 2 X is the set O(x) := {S(g, x) : g 2 G}.

For a discrete-time dynamical system (X,N0, T ), the orbit of a point
x 2 X is the set

O(x) = {Tn(x) : n 2 N0} . (1.1)

If the map T is invertible, then we can consider the action of the group Z
on X and define the forward orbit and backward orbit of a point x 2 X by

O+(x) := {Tn(x) : n � 0} , O�(x) := {Tn(x) : n  0} .

The orbit O(x) is then given by O+(x) [O�(x).



10 CHAPTER 1. INTRODUCTION AND BASIC CONCEPTS

For a continuous-time dynamical system (X,R,�), the forward orbit and
backward orbit of a point x 2 X are defined by

O+(x) :=
[

t�0

�t(x), O�(x) :=
[

t0

�t(x), (1.2)

and the orbit is O(x) = O+(x) [O�(x).

Definition 1.5. Given a dynamical system (X,G,S), the centralizer of a
point x 2 X is the sub-semigroup

C(x) := {g 2 G : S(g, x) = x} .

A point x is called fixed if C(x) = G.

For a discrete-time dynamical system (X,N0, T ), a point x 2 X is fixed
if and only if T (x) = x. If x is not a fixed point but its centralizer is not
G, x is called periodic and the minimum positive element in C(x) is the
minimal period of x. For a fixed point O(x) = {x}, and for a periodic point
of minimal period p

O(x) =
�
x, T (x), T 2(x), . . . , T p�1(x)

 
.

For a non-invertible map there might be points which are not periodic but
are pre-images of a periodic point. For such points x, the centralizer con-
tains only the identity of G, but there exists k � 1 such that C(T k(x))
has a minimal positive element p. These points are called pre-periodic with
minimal period p.

For a continuous-time dynamical system (X,R,�) given by the solutions
to ẋ(t) = F (x), a point x 2 X is fixed if and only if F (x) = 0. If x is not
a fixed point but its centralizer is not trivial, x is called periodic and the
minimum positive element in C(x) is the minimal period of T . A periodic
point x of minimal period T > 0 satisfies

�t+T (x) = �t(x), 8 t 2 R,

and
�t+s(x) 6= �t(x), 8 s 2 (0, T ), t 2 R.

For a fixed point O(x) = {x}. For a periodic point of minimal period T

O(x) =
[

0tT

�t(x),

and its orbits is called a periodic orbit of period T .
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Definition 1.6. Given a dynamical system (X,G,S), a set A ⇢ X is called
invariant if for each x 2 A it holds S(g, x) 2 A for all g 2 G.

For a continuous-time dynamical system one can introduce a weaker
notion. We say that a subset A of X is forward invariant if for each x 2 A
it holds �t(x) 2 A for all t � 0. Analogously A is called backward invariant
if the same relation holds for all t  0. By definition, A is invariant if the
previous relation holds for all t 2 R.

For a discrete-time dynamical system (X,N0, T ), we consider more sit-
uations. We say that a subset A of X is forward invariant if T (A) ✓ A,
A is called fully invariant if T (A) = A, A is called completely invariant if
T�1(A) = A. The di↵erent notions are useful in di↵erent approaches.

Finally, if the action of the group G on X can be interpreted in terms of
time evolution, we can introduce notions about the forward and backward
evolution of an orbit. In more general situations, one studies the set of all
the possible limit points of an orbit as the sequence of the elements of the
group acting varies.

Definition 1.7. For a discrete-time dynamical system (X,N0, T ), the !-
limit set of a point x 2 X is the set

!(x) := {y 2 X : 9nk ! +1 such that Tnk(x) ! y as k ! 1} .

Definition 1.8. For a continuous-time dynamical system (X,R,�), the ↵-
limit set of a point x 2 X is the set

↵(x) :=
�
y 2 X : 9 tk ! �1 such that �tk(x) ! y as k ! 1

 
.

Analogously the !-limit set of a point x 2 X is the set

!(x) :=
�
y 2 X : 9 tk ! +1 such that �tk(x) ! y as k ! 1

 
.

Proposition 1.1. Given a continuous-time dynamical system (X,R,�), let
x 2 X such that O+(x) is bounded. Then the set !(x) is non-empty, compact
and invariant. If O�(x) is bounded, the same holds for the set ↵(x).

Proof (see [Gl94]). Given a point x with bounded forward orbit, let us con-
sider a strictly increasing sequence {⌧j}1j=0 of times in R+ with ⌧0 = 0 and
⌧j ! +1, and let xj := �⌧j (x). We first show that

!(x) =
1\

j=0

áO+(xj). (1.3)
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By the definition of the !-limit set, it is immediate that !(x) ⇢ áO+(xj) for

all j � 0. Hence it remains to show that if y 2 \1

j=0
áO+(xj) then y 2 !(x).

By definition of closure of a set, for all j � 0 there exists a sequence {⇠j
n
}n of

points in O+(xj) such that ⇠j
n
! y, hence there exists a sequence {tjn}n such

that �
t
j
n
(xj) ! y. In particular we have proved that there exists a strictly

increasing diverging sequence {⌧j}1j=0 and sequences {tjn}n such that

�
⌧j+t

j
n
(x) ���!

n!1
y, 8 j � 0.

From {⌧j + tjn}j,n we can then extract a diverging sequence {t̃k}k such that
�
t̃k
(x) ! y as k ! 1. Hence y 2 !(x), and (1.3) is proved.

The first properties of !(x) follow from (1.3). The sets { áO+(xj)}j define
a decreasing sequence of non-empty closed sets, which are bounded because
O+(x) is bounded. Hence !(x) is a non-empty compact set. It remains to
prove that it is invariant.

Let y 2 !(x), and let {tk}k be a positively diverging sequence such that
�tk(x) ! y as k ! 1. By the properties of a continuous-time dynamical
system

�t+tk(x) = �t(�tk(x)) ���!
k!1

�t(y), 8 t 2 R.

Hence we have shown that �t(y) 2 !(x) for all t 2 R. This concludes the
proof for the !-limit set.

The proof for the ↵-limit set follows along the same lines.

Proposition 1.2. Given a discrete-time dynamical system (X,N0, T ), let
x 2 X such that O(x) is bounded. Then the set !(x) is non-empty and
compact. If T is continuous then !(x) is fully invariant.

Proof. We can repeat the proof of Proposition 1.1 to show that the !-limit
set is non-empty and compact. In particular the proof follows from the
analogue of (1.3).

Let T : X ! X be a continuous map with respect to a topological struc-
ture on X. Then given y 2 !(x), and being {nk}k the diverging sequence
of naturals for which Tnk ! y as k ! 1, we have

Tnk+1(x) = T (Tnk(x)) ���!
k!1

T (y).

Hence T (y) 2 !(x), and !(x) is a positively invariant set. On the other
hand, since O(x) is bounded, the sequence {Tnk�1(x)}k admits a convergent
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sub-sequence {Tnkj
�1(x)}j with limit point z. Hence z 2 !(x). Again by

continuity of T we find

T (z) = T
⇣

lim
j!1

Tnkj
�1(x)

⌘
= lim

j!1

Tnkj (x) = y

since nkj is a subsequence of nk. Hence y 2 T (!(x)), and !(x) is then fully
invariant.

We remark that the !-limit set is not completely invariant in general. It
is su�cient to think of the case in which the !-limit set is a fixed point with
more than one pre-image.

Definition 1.9. For a continuous-time dynamical system (X,R,�), the or-
bit of a point y is called homoclinic if there exists a fixed point x such
that

↵(y) = !(y) = {x}.
If there exist two distinct fixed points x1, x2 such that

↵(y) = {x1} and !(y) = {x2},

then the orbit of the point y is called heteroclinic.

Definition 1.9 can be adapted verbatim to the case of a discrete-time
dynamical system (X,N0, T ) with invertible T .

1.3 Examples

Here we collect the main examples of discrete dynamical systems that will
be used in the following.

Example 1.3 (The roots). Sequences defined by a recurrence are the first very
basic example of a discrete-time dynamical system. Let c > 0, k 2 [1, 3],
and consider the sequence {an} defined by

(
an+1 =

1
2

⇣
an + c

akn

⌘
, 8n � 0

a0 2 (0,+1)

It is an exercise to prove that for all a0 2 R+ it holds limn an = c
1

k+1 . This
can be read as a result about the asymptotic behaviour of the orbits of
points in R+ for the dynamical system defined by the map

Tc,k : R+ ! R+, Tc,k(x) =
1

2

⇣
x+

c

xk

⌘
.

In fact one can prove that !(x) = c
1

k+1 for all x 2 R+.
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Example 1.4 (Rotations of the circle). Let us consider the action of Z on S1

given by the rotation of an angle 2⇡↵, for ↵ 2 R, that is

S(n, z) = z e2⇡in↵ 2 S1, 8 z 2 S1, n 2 Z.

By writing S1 = {z 2 C : z = e2⇡ix, x 2 R}, we make the identification
of S1 with [0, 1]/(0 ⇠ 1), the unit interval with end points identified. The
rotation of angle 2⇡↵ can then be written as a map on S1 as

R↵ : S1 ! S1, R↵(x) = x+ ↵ (mod 1) = {x+ ↵}. (1.4)

Proposition 1.3. If ↵ is rational all orbits of R↵ are periodic of the same
minimal period. If ↵ is irrational all orbits of R↵ are dense.

Proof. If ↵ = p/q 2 Q with (p, q) = 1, then Rq
↵(x) = {x + q↵} = x for all

x 2 [0, 1). In addition, if n 2 N and n < q, we can write n↵ = np/q = m+r/q
with m 2 Z and r/q 2 Q \ (0, 1). Hence Rn

↵(x) = {x+ r/q} 6= x. It follows
that all orbits are periodic of the minimal period q.

Let’s now assume that ↵ is irrational. Since R↵ is an isometry, it is
enough to show that one orbit is dense. In fact, we prove that forward
orbits are dense by considering {Rn

↵(0)}n�0.
Let x 2 S1, then we show that for any " > 0 there exists n̄ such that

Rn̄
↵(0) 2 (x � " , x + "). First, by Proposition B.3, we find p, q 2 N such

that 0 < q↵ � p < ". This means that Rq
↵(0) 2 (�", "). If we now consider

the points {k(q↵ � p)}k�0, it follows that there exists K > 0 such that the
points {k(q↵ � p)}0kK create a partition of [0, 1] into intervals of length
less than ". Therefore for all x 2 S1

min
0kK

d(x, k(q↵� p)) < "

and the minimum is achieved for some value k̄. Hence choosing n̄ = k̄q the
proof is finished.

A consequence of the proposition is that if ↵ is rational, then all points
have their own periodic orbit as ↵-limit and !-limit sets. Instead, if ↵ is
irrational, then ↵(x) = !(x) = S1 for all x.

Example 1.5 (The tent maps). It is a family of maps

Ts : [0, 1] ! [0, 1] with s 2 (0, 2]

defined as

Ts(x) =

(
s x, if x 2 [0, 12 ];

s (1� x), if x 2 [12 , 1].
(1.5)
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Example 1.6 (The logistic maps). It is a family of maps

T� : [0, 1] ! [0, 1] with � 2 (0, 4]

defined as
T�(x) = �x (1� x). (1.6)

Example 1.7 (Linear endomorphisms of the circle). It is a family of maps

Tm : S1 ! S1 with m 2 N, m � 2

where again we think of S1 as [0, 1]/(0 ⇠ 1), defined as

Tm(x) = {mx}. (1.7)

Special cases are m = 2 which is also called the Bernoulli map and is related
with the binary expansion of real numbers, and m = 10 which is related with
the decimal expansion of real numbers.

Example 1.8 (Symbolic dynamics). We now introduce an abstract system.
Let A be a finite or countable alphabet and denote by N 2 N [ {1} the
number of symbols. Let ⌦A be the set of all infinite strings with symbols
from A, that is

⌦A = AN0 = {! = (!i)i2N0 : !i 2 A 8 i 2 N0} .

If N < 1, the space X is compact when endowed with the product topology
or with the metric

d✓(!, !̃) := ✓min{i2N0 :!i 6=!̃i} , for a fixed ✓ 2 (0, 1). (1.8)

The space ⌦A is totally disconnected and a basis of the product topology is
given by the cylinders: for k 2 N, i1, i2, . . . , ik 2 N0, and a1, a2, . . . , ak 2 A,
we define

Ci1,i2,...,ik(a1, a2, . . . , ak) :=
�
! 2 ⌦A : !ij = aj 8 j = 1, . . . , k

 
.

In particular, we use the notations C(a) = C1(a) and

Ci1,i2,...,ik(!) = Ci1,i2,...,ik(!i1 ,!i2 , . . . ,!ik)

for a fixed ! 2 ⌦A.
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On ⌦A we consider the discrete dynamical system given by the action of
the continuous map

� : ⌦A ! ⌦A, (�(!))i = !i+1 8 i 2 N0.

The system (⌦A,N0,�) is called full shift on A.
In some situations it is useful to consider a sub-system of the full shift.

A first easy example is given by considering infinite strings which cannot
contain a given set of words of finite length. For example, let M = (mij) 2
M(N ⇥ N, {0, 1}), a N ⇥ N matrix with coe�cients in the set {0, 1} and
rows and columns indexed by A. We set

⌦A,M :=
n
! 2 AN0 : m!i !i+1 = 1 8 i 2 N0

o
,

that is, saying that the transition from a 2 A to b 2 A is allowed i↵ mab = 1,
the set ⌦A,M contains the infinite strings in AN0 which contain only allowed
transitions. It is immediate to verify that ⌦A,M is forward invariant for the
action of � and it is fully invariant if for each b 2 A there exists a 2 A with
mab = 1. Hence we can restrict the action of � to ⌦A,M , and the dynamical
system (⌦A,M ,N0,�) is called subshift of finite type on A.

Finally, by considering bi-infinite strings AZ, one can consider the action
of � onAZ and onAZ

M
. In this case the map � is invertible and the dynamical

systems (AZ,Z,�) and (AZ
M
,Z,�) are called double full shift and double

subshift of finite type, respectively.

Example 1.9 (Toral automorphisms). Let T2 := R2/Z2 be the two dimen-
sional torus. Given a matrix A 2 M(2⇥ 2,Z) with det(A) = ±1, the linear
map R2 3 x 7! Ax may be projected onto a continuous automorphisms of
T2 given by

T2 3
✓
x
y

◆
7! TA(x, y) := A

✓
x
y

◆
mod Z2.

The most famous example is the so-called Arnold’s Cat map, which is the
toral automorphism given by the matrix

A =

✓
2 1
1 1

◆

Example 1.10 (The standard map). Let us consider an electron with charge e
moving horizontally in a cyclotron thanks to the action of a vertical magnetic
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field of constant modulus B, and subject to a time-dependent voltage drop
V sin(!t) across a narrow azimuthal gap. Let E denote the energy of the
electron, then the period of rotation is given by T = 2⇡ E

eBc
. We measure

energy and time (E, t) just before every voltage drop, hence after one circuit
we obtain

E0 = E � e V sin(!t) , t0 = t+
2⇡

eBc
E0 .

Using the variables x := !

2⇡ t and y := !

eBc
E, and setting k := 2⇡ !V

Bc
, we

have defined the map

T̃ : R⇥ R ! R⇥ R , T̃ (x, y) =
⇣
x+ y � k

2⇡
sin(2⇡x) , y � k

2⇡
sin(2⇡x)

⌘
.

Note that T̃ (x + 1, y) = T̃ (x, y) + (1, 0), hence given the projection ⇡ :
R⇥ R ! S1 ⇥ R defined as ⇡(x, y) = (x� bxc, y), it follows that the map

T : S1 ⇥R ! S1 ⇥R , T (x, y) =
⇣
x+ y� k

2⇡
sin(2⇡x) , y� k

2⇡
sin(2⇡x)

⌘

(1.9)
satisfies ⇡ � T̃ = T � ⇡. Hence T̃ is a lift of T . The map T is known as the
(Chirikov) standard map.

Note also that T (x, y + 1) = T (x, y) + (0, 1), hence the standard map
can be considered as acting on T2.

Example 1.11 (Birkho↵ billiards). Let ⌦ ⇢ R2 be a strictly convex domain
with C3 boundary2. Let us normalize the set to |@⌦| = 1 and fix the positive
orientation of the boundary.

The mathematical billiard is the continuous dynamical system given by
the frictionless motion of a pointwise ball inside ⌦, with elastic specular
reflections at @⌦. The phase space is then given by ⌦⇥S1, since the velocity
of the ball is preserved in modulus.

A convenient simpler description of the system is given by the Poincaré
map of the flow on the set @⌦ ⇥ [0,⇡], described by the evolution of the
couples (position,angle) of the subsequent collisions of the ball with the
boundary of the set. For each collision, its position can be described by the
arc-length coordinate s 2 S1 and its angle by the angle # 2 [0,⇡] between
the trajectory of the ball after the collision and the oriented tangent vector
to @⌦ at the collision point. We have thus described a map

T : S1 ⇥ (0,⇡) ! S1 ⇥ (0,⇡)

2
Thanks to [Ha77] this assumption avoid accumulation of collision times
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which can be continuously extended to S1 ⇥ [0,⇡] by T (s, 0) = (s, 0) and
T (s,⇡) = (s,⇡).

This map may be defined with some cautions for more general domains
⌦ ⇢ R2 (see [CM06]).

Example 1.12 (Mechanics and Billiards). Let m1 and m2 be two distinct
point masses moving frictionless on the interval [0, 1], subject to perfectly
elastic collisions among them and with two infinite ideal walls at the ex-
tremes of the interval. Let x1, x2 2 [0, 1] with x1  x2, and v1, v2 2 R,
denote the positions and velocities of the masses, and introduce the vari-
ables q1 :=

p
m1 x1 and q2 :=

p
m2 x2, and u1 =

p
m1 v1 and u2 :=

p
m2 v2.

The invariances of the kinetic energy K and of the linear momentum P of
the system read in the new variables as

u21 + u22 = 2K ,
p
m1 u1 +

p
m2 u2 = P .

In the new variables, the configuration space is given by the triangle

A =
�
(q1, q2) 2 R2 : q1 � 0 , q2 

p
m2 ,

p
m2 q1 

p
m1 q2

 
.

A trajectory (q1(t), q2(t)) satisfies the following constraints:

q̇21(t) + q̇22(t) = 2K 8 t

(hence the motion occurs with constant speed);

p
m1 q̇1 +

p
m2 q̇2 = P 8 t

(hence the velocity vector of the motion has fixed scalar product with the
vector (

p
m1,

p
m2)).

These properties imply that the motion (q1(t), q2(t)) in A can be de-
scribed by the orbit of a mathematical billiard ball inside A.

1.4 Exercises

1.1. Let T : [0, 1] ! [0, 1] be defined by

T (x) =

(
1
2x, if x 2 (0, 1];

1, if x = 0.

Show that for all x 2 [0, 1] the !-limit set !(x) is non-empty but not forward
invariant.



1.4. EXERCISES 19

1.2. In Example 1.12 let the masses move in [0,+1), and consider the
motion with initial positions q1(0) < q2(0) and velocities u1(0) = 0 and
u2(0) = �1. If m2 � m1, how many collisions among the two balls and
among mass m1 and the wall at x = 0 will occur? What happens if m2 =
100nm1?



Chapter 2

Continuous-time dynamical

systems

2.1 Linear systems

The simplest case to study is that of an ordinary di↵erential equation with
linear vector field. Let A 2 M(n⇥n,R) be a real n⇥n matrix and consider
the ordinary di↵erential equation ẋ = Ax. It is well known that the flow
is given by �t(x) = eAtx, and the behaviour of the orbits is determined by
the eigenvalues of A. We state a result in the case that all the eigenvalues
of A are simple, an analogous result holds counting the multiplicities of the
eigenvalues and using the Jordan normal form of A.

Theorem 2.1. Let A 2 M(n⇥ n,R) be a real n⇥ n matrix with k distinct
real eigenvalues �1, . . . ,�k, and m = 1

2(n � k) distinct couples of conjugate
complex eigenvalues aj ± i bj. Then there exists an invertible matrix P 2
M(n⇥ n,R) such that

P�1AP = ⇤ := diag
⇣
�1, . . . ,�k, B1, . . . , Bm

⌘

where

Bj =

 
aj �bj

bj aj

!
, 8 j = 1, . . . ,m,

and the flow of the di↵erential equation ẋ = Ax is given by

�t(x) = P e⇤ t P�1 x

where
e⇤ t = diag

⇣
e�1t, . . . , e�kt, etB1 , . . . , etBm

⌘

23
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and

etBj = eajt
 
cos(bjt) � sin(bjt)

sin(bjt) cos(bjt)

!
, 8 j = 1, . . . ,m.

Remark 2.2. Let us consider the case n = 2, 3, so that the matrix A can
only have multiple real roots. If n = 2 the possible Jordan normal form of
a matrix A with a double real eigenvalue � are

⇤ = diag
⇣
�,�

⌘
or

 
� 1

0 �

!
.

In the non-diagonal case, one writes ⇤ = �I +N , where N is the nilpotent
matrix

N =

 
0 1

0 0

!

for which N2 = 0. So that1 e⇤t = e�t eNt. It follows that

e⇤t = diag
⇣
e�t, e�t

⌘
or e�t

 
1 t

0 1

!
.

Analogously, in the n = 3 case, if A has eigenvalues with geometric multi-
plicities greater than or equal to 2, we are reduced to the previous case. If
A has an eigenvalue � with geometric multiplicity 1 its Jordan normal form
is

⇤ =

0

BB@

� 1 0

0 � 1

0 0 �

1

CCA ,

and as before we write ⇤ = �I+N , where N is a nilpotent matrix such that
N3 = 0. Then

e⇤t = e�t

0

BB@

1 t 1
2 t

2

0 1 t

0 0 1

1

CCA .

In the case of linear ordinary di↵erential equations it is also particularly
simple to find fixed points, periodic orbits, and invariant sets. First, using
Definition 1.5 we find

1
Here we use the fact that the matrices I and N commute.
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Proposition 2.3. The fixed points of the ordinary di↵erential equation ẋ =
Ax are the points in the kernel of A.

In particular, the origin x0 = 0 is a fixed point for all A, and the other
fixed points come in linear subspaces of Rn. We’ll see that the origin plays
a special role in characterizing the dynamics of all the non-trivial orbits.

Concerning periodic orbits, it is straightforward from Theorem 2.1 that
they can exist only if there is a couple of conjugate complex eigenvalues with
null real part. If this is the case, all orbits leaving in the relative eigenspace
are periodic, since they are of the form etBx with a = 0.

In general, the space Rn can be written as the direct sum of generalised
eigenspaces of A, and according to the asymptotic behaviour of the orbits,
it makes sense to consider the following decomposition.

Definition 2.1. Let A 2 M(n ⇥ n,R) be a real n ⇥ n matrix and let E�

denote the generalised eigenspace of an eigenvalue �. We call:
Stable eigenspace of 0 the linear space Es(0) defined as

Es(0) := Span {v 2 E� : <(�) < 0} ;

Central eigenspace of 0 the linear space Ec(0) defined as

Ec(0) := Span {v 2 E� : <(�) = 0} ;

Unstable eigenspace of 0 the linear space Eu(0) defined as

Eu(0) := Span {v 2 E� : <(�) > 0} .

Theorem 2.4. Let A 2 M(n ⇥ n,R) be a real n ⇥ n matrix and consider
the ordinary di↵erential equation ẋ = Ax. Then:

(i) n = dimEs(0) + dimEc(0) + dimEu(0);

(ii) the eigenspaces Es(0), Ec(0), Eu(0) are invariant;

(iii) the following dynamical characterisation holds:

Es(0) = {x 2 Rn : �t(x) ! 0 as t ! +1} ;

Eu(0) = {x 2 Rn : �t(x) ! 0 as t ! �1} .

Proof. It is a simple application of Theorem 2.1.
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Remark 2.5. It is interesting to notice that we haven’t given a dynami-
cal interpretation for the central eigenspace of 0. The reason is that if
dimEc(0) 6= 0 we can find di↵erent behaviours for the orbits. Let us con-
sider the simple case n = dimEc(0) = 2 with � = 0 being a double eigen-
value. Then there are two possibilities for the matrix A (up to use of the
Jordan normal form):

A = diag
⇣
0, 0
⌘

or

 
0 1

0 0

!
.

In the first case the flow is the identity, that is �t(x, y) = (x, y) for all (x, y) 2
R2, whereas in the second case the flow is given by �t(x, y) = (x + ty, y)
for all (x, y) 2 R2. Using Definition 2.2, in the first case (0, 0) is Lyapunov
stable and in the second case it is unstable.

Theorem 2.4 gives the characterisation of the dynamics with respect to
the fixed point 0. In particular if ker(A) = {0} and dimEc(0) = 0, all orbits
converge to 0, either for t ! +1 or for t ! �1. If instead the kernel of
A consists of a non-trivial linear subspace W with dimW = dimEc(0), it is
easy to see that the dynamics of non-fixed points is determined by that of
the points in the space W?.

Linear systems in the plane

In the case of linear systems in R2 it is possible to characterise the dynamical
properties of the system without explicitly computing the eigenvalues of the
matrix A. We also introduce a terminology for fixed points with di↵erent
local dynamics.

The nature of the origin 0 = (0, 0) as a fixed point of a system ẋ = Ax,
with x = (x, y) 2 R2 is determined by the relation between the determinant
and the trace of A. Indeed the characteristic polynomial of A is

pA(�) = �2 � tr(A)�+ det(A) ,

so that the eigenvalues are

�± =
tr(A)±

p
tr2(A)� 4 det(A)

2
,

and we distinguish di↵erent cases according to the sign of the determinant
of A and of the discriminant � := tr2(A)� 4 det(A).
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Case 1. det(A) > 0 and � > 0. The matrix A has two real distinct
eigenvalues satisfying �+ > �� > 0 if tr(A) > 0, and �� < �+ < 0 if
tr(A) < 0.

In both cases the orbits are generalised parabola through 0, at which they
are tangent to the line generated by the eigenvector relative to eigenvalue
of smallest modulus. If tr(A) > 0, all orbits converge to 0 as t ! �1,
and the origin is called an unstable node. We also notice that in this case
Eu(0) = R2. If tr(A) < 0, all orbits converge to 0 as t ! +1, and the
origin is called a stable node. We also notice that in this case Es(0) = R2.

Note that 0 being a node is an open property since su�ciently small
perturbations of A don’t change the nature of the origin.

Case 2. det(A) > 0 and � < 0. The matrix A has a couple of complex
conjugate eigenvalues �± with <(�±) =

1
2 tr(A).

If tr(A) > 0 all orbits are spirals out of 0 and they are either clockwise
or anti-clockwise according for example to the sign of ẋ when y = 0. In this
case the origin is called an unstable focus and Eu(0) = R2. If tr(A) < 0
all orbits are spirals into 0 and as before they are either clockwise or anti-
clockwise. In this case the origin is called a stable focus and Es(0) = R2. If
tr(A) = 0 all orbits are concentric circles about 0 and again they are either
clockwise or anti-clockwise. In this case the origin is called a center and
Ec(0) = R2.

Notice that 0 being a focus is an open property. Instead 0 being a center
is a closed property and arbitrarily small perturbations of A may turn the
origin into an unstable or stable focus.

Case 3. det(A) > 0 and � = 0. The matrix A has one double real eigenvalue
� = 1

2 tr(A) 6= 0.
If A is diagonalisable then the orbits lie on straight lines through 0. If

tr(A) > 0, all orbits converge to 0 as t ! �1, and the origin is called an
unstable star. We also notice that in this case Eu(0) = R2. If tr(A) < 0, all
orbits converge to 0 as t ! +1, and the origin is called a stable star. We
also notice that in this case Es(0) = R2.

If A is not diagonalisable then we use its Jordan normal form to under-
stand the behaviour of the orbits. The di↵erential equation in normal form
reads (

ẋ = �x+ y

ẏ = �y

so that there exists an invariant line, which is generated by the eigenvector
of A, and the behaviour of the orbits can be found by looking at the sign of
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the two components of the vector field. If tr(A) > 0, all orbits converge to
0 as t ! �1, and the origin is called an unstable improper node. We also
notice that in this case Eu(0) = R2. If tr(A) < 0, all orbits converge to 0
as t ! +1, and the origin is called a stable improper node. We also notice
that in this case Es(0) = R2.

Both 0 being a star and being an improper node are closed properties.
An arbitrarily small perturbation can turn the origin into a focus or a node,
not changing the stability but the nature of the fixed point.

Case 4. det(A) < 0. The matrix A has a couple of distinct real eigenvalues
�� < 0 < �+.

In this case the orbits are generalised hyperbolae, and the origin is called
a saddle. It holds dimEu(0) = dimEs(0) = 1, and none of the orbits outside
the eigenspaces approaches the origin as t ! ±1. Being a saddle is an open
property.

Case 5. det(A) = 0. The matrix A has two real eigenvalues, �� = 0 and
�+ = tr(A).

If tr(A) 6= 0, then A is diagonalisable and there is a line of fixed points.
All the other orbits lie in straight lines which are parallel to the eigenspace of
�+. If tr(A) = 0 we are reduced to the case of Remark 2.5 up to a change of
coordinates, hence either all points are fixed or there is a line of fixed points
and all other orbits lie in straight lines which are parallel to the eigenspace
of ��.

Clearly, the properties of the origin considered in this case are closed
and can be changed by arbitrarily small perturbations.
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2.2 Stability

Let ẋ = F (x) be an ordinary di↵erential equation in Rn with flow �t(·).

Definition 2.2. A point x is Lyapunov stable if for all " > 0 there exists
� > 0 such that d(x, y) < � implies d(�t(x),�t(y)) < " for all t � 0.

Remark 2.6. Show that it is necessary to introduce also the notion of orbital
stability.

Definition 2.3. A point x is Lyapunov asymptotically stable if it is Lya-
punov stable and there exists � > 0 such that d(x, y) < � implies

d(�t(x),�t(y)) ����!
t!+1

0 .

We call domain of asymptotic stability of x the set D(x) of points y for
which d(�t(x),�t(y)) ! 0 as t ! +1. If D(x) = Rn we say that x is
globally Lyapunov asymptotically stable.

Remark 2.7. If in Definition 2.3 we drop the request that the point x is
Lyapunov stable, then x is called quasi-asymptotically stable. In this case
there exists a neighbourhood B�(x) so that d(�t(x),�t(y)) ! 0 as t ! +1
for all y 2 B�(x), but the orbits of these points may go arbitrarily far from
that of x before convergence.

It is particularly important to study the stability of a fixed point x0 for
which �t(x0) = x0 for all t in Definitions 2.2 and 2.3.

Example 2.1 (see [Gl94]). Let us consider the following di↵erential equation
in R2 8

<

:

ẋ = x� y � x(x2 + y2) + xyp
x2+y2

ẏ = x+ y � y(x2 + y2)� x
2p

x2+y2

Using polar coordinates (⇢, ✓) as shown in Section 2.4 (see (2.8)) with x =
⇢ cos ✓, y = ⇢ sin ✓, we are reduced to the equation

(
⇢̇ = ⇢(1� ⇢2)

✓̇ = 1� cos ✓

It is now easy to determine the phase portrait of the equation and deduce
that (x0, y0) = (1, 0) is a quasi-asymptotically fixed point, but it is not
Lyapunov stable.
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One first tool to study the stability of a fixed point is to look at the
linearisation of the vector field in the point.

Definition 2.4. A fixed point x0 of a C1 vector field F : Rn ! Rn is called
hyperbolic if all the eigenvalues of the Jacobian matrix JF (x0) have real
part di↵erent from zero.

Theorem 2.8 (Hartman-Grobman). Let x0 be a hyperbolic fixed point of
a C1 vector field F : Rn ! Rn. Then there exists a neighbourhood U(x0)
and a homeomorphism h : U(x0) ! Rn which sends orbits of the di↵erential
equation ẋ = F (x) into orbits of the linear di↵erential equation ẏ = JF (x0)y
without changing their direction of time parametrisation2. In particular the
homeomorphism h leaves invariant the stability properties of the fixed point
y
0
= 0.

The proof can be found in Appendix C.
Theorem 2.8 implies that we can characterise a hyperbolic fixed point x0

by looking at the linear system ẏ = JF (x0)y. In particular the qualitative
behaviour of the orbits in a neighbourhood of x0 coincides with that of the
orbits in a neighbourhood of y

0
= 0. However, in general, the regularity of

h in Theorem 2.8 does not increase by increasing the regularity of a general
F . Hence, the “shape” of the orbits may change under the action of h.

The situation is easier in dimension two. If x0 2 R2 is a hyperbolic fixed
point, then JF (x0) is in one of the cases 1-4 excluding case 2 with vanishing
trace. If we are not in case 3, the fixed point x0 can be characterised like
y
0
= 0 for ẏ = JF (x0)y. Hence we can talk about stable and unstable

nodes, stable and unstable foci, and saddles. See [Gl94, Section 5.2].
We now briefly discuss the problem of the regularity of h for F 2 C!.

Lyapunov functions

Given a real C1 function V (x), we introduce the notation V̇ (x) for its deriva-
tive along a vector field F . Namely

V̇ (x) := hrV (x) , F (x)i (2.1)

Notice that V̇ (x) = d

dt
V (�t(x))|t=0.

2
A formal statement is that, if �t is the flow of the original system ẋ = F (x) and  t

is the flow of the linear system ẏ = JF (x0)y, then for all x 2 U(x0) we have h(�t(x)) =
 t(h(x)) for all t 2 R such that �t(x) 2 U(x0).
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Definition 2.5. Let x0 be a fixed point of a vector field F : Rn ! Rn. A
C1 real function V : U ! R defined in a neighbourhood U of x0 is called a
Lyapunov function for x0 if:

(i) V (x) > V (x0) for all x 2 U \ {x0};

(ii) V̇ (x)  0 for all x 2 U .

If the function V : U ! R satisfies (i) and

(ii)’ V̇ (x) < 0 for all x 2 U \ {x0},

it is called a strict Lyapunov function for x0.

Theorem 2.9 (First Lyapunov stability theorem). Let x0 2 Rn be a fixed
point of a vector field F : Rn ! Rn. If there exists a Lyapunov function for
x0, then x0 is Lyapunov stable.

Proof. Let V : U ! R be the Lyapunov function for x0. Given " > 0 such
that B"(x0) ⇢ U , we let

m := min
@B"(x0)

V and Sm := {x 2 B"(x0) : V (x) < m}

By definition V (x0) < m, hence x0 2 Sm. Moreover by continuity there
exists � > 0 such that B�(x0) ⇢ Sm. We now show that if y 2 B�(x0) then
�t(y) 2 B"(x0) for all t � 0.

Condition (ii) in Definition 2.5 implies that V (�t(y))  V (y) < m for all
t � 0. We conclude that if there exists t0 > 0 such that �t0(y) 62 B"(x0), then
by continuity of the flow there exists t1 2 (0, t0) such that �t1(y) 2 @B"(x0).
This is a contradiction to the definition of m.

Theorem 2.10 (Second Lyapunov stability theorem). Let x0 2 Rn be a
fixed point of a vector field F : Rn ! Rn. If there exists a strict Lyapunov
function for x0, then x0 is Lyapunov asymptotically stable.

Proof. Let V : U ! R be the strict Lyapunov function for x0. By Theorem
2.9 the fixed point x0 is Lyapunov stable. We now need to show that the
domain of asymptotic stability of x0 contains a ball B�(x0).

Let us fix " > 0, and let � > 0 be such that d(x0, y) < � implies
d(x0,�t(y)) < " for all t � 0. Hence O+(y) ⇢ B"(x0) for all y 2 B�(x0), and
by Proposition 1.1 we have that !(y) is a non-empty, compact, invariant
subset of B"(x0) for all y 2 B�(x0).
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Let us fix y 2 B�(x0). Condition (ii)’ in Definition 2.5 implies that
V (�t(y)) is a decreasing function of t, hence there exists

c := lim
t!+1

V (�t(y))

But V |!(y) ⌘ c by continuity, in fact for all z 2 !(y) we have

V (z) = lim
k!1

V (�tk(y)) = c

where {tk}k is the diverging sequence such that �tk(y) ! z as k ! 1.
Finally, since !(y) is invariant, we have V (�t(z)) = c for all t, which by

(2.1) implies V̇ (z) = 0 for all z 2 !(y). Hence !(y) ⇢ {V̇ ⌘ 0}, and by
condition (ii)’ !(y) = {x0}.

We have thus proved that B�(x0) ⇢ D(x0).

Corollary 2.11 (La Salle’s Invariance Principle). Let x0 be a fixed point
of a vector field F : Rn ! Rn. If there exists a Lyapunov function for x0
defined on a neighbourhood U of x0, then for all y 2 U such that O+(y) is

contained in U and is bounded, we have !(y) ✓ {V̇ ⌘ 0}.

Example 2.2. Let us consider the system in R2 given by
(

ẋ = y

ẏ = �y3 � x� x3

The point (0, 0) is the only fixed point and it is not hyperbolic. Looking
for a Lyapunov function of the form V (x, y) = ax2 + bx4 + cy2 one finds
V̇ (x, y) = 2xy(a� c) + 2x3y(2b� c)� 2cy4. Hence

V (x, y) = 2x2 + x4 + 2y2

is a Lyapunov function for (0, 0), with {V̇ ⌘ 0} = {y = 0}. Hence V is not a
strict Lyapunov function. By Theorem 2.9 we have that (0, 0) is Lyapunov
stable, and applying Corollary 2.11 we also obtain that there exists � > 0
such that for all y 2 B�((0, 0)) it holds !(y) ⇢ {y = 0}. Moreover, since
!(y) is an invariant set and the only invariant subset of {y = 0} is {(0, 0)},
we have proved that (0, 0) is asymptotically stable.

Theorem 2.12 (Bounding functions). Let F be a vector field in Rn, and
assume that there exist a C1 real function V : Rn ! R, a compact set
G ⇢ Rn and k 2 R such that: (a) G ⇢ Vk := {V < k}; (b) there exists � > 0
such that V̇ (x)  �� for all x 2 Rn \ G. Then for all x 2 Rn there exists
t0 � 0 such that �t(x) 2 Vk for all t > t0.
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Proof. If x 2 Vk we are done, since by assumption (b) V̇ |@Vk
< 0, and we

can choose t0 = 0. If x 62 Vk and �t(x) 62 Vk for all t > 0

V (�t(x))� V (x) =

Z
t

0

d

ds
V (�s(x)) ds =

Z
t

0
V̇ (�s(x)) ds  ��t

which implies V (�t(x)) < k for t > V (x)�k

�
. Hence we find a contradiction,

and we have thus proved that there exists t0 > 0 such that �t0(x) 2 Vk, and
as before this implies that �t(x) 2 Vk for all t � t0.

Example 2.3 (Lorenz equations). Let us consider the system in R3 given by

8
>><

>>:

ẋ = �(�x+ y)

ẏ = rx� y � xz

ż = �bz + xy

with �, r, b positive constants. We can apply Theorem 2.12 with

G =
�
(x, y, z) 2 R3 : rx2 + y2 + b(z � r)2 < 2br2

 

V (x, y, z) =
1

2

⇣
rx2 + �y2 + �(z � 2r)2

⌘

and � = �br2.

Using the theory of Lyapunov functions we now give a proof of the
asymptotic stability of sinks, i.e. hyperbolic fixed points of a C1 vector field
with all eigenvalues of the Jacobian matrix of the field with negative real
part.

Corollary 2.13. Let x0 be a hyperbolic fixed point of a C1 vector field
F : Rn ! Rn, and assume that all the eigenvalues of JF (x0) have negative
real part. Then x0 is asymptotically stable.

Proof. Let’s assume without loss of generality that x0 = 0, then the vector
field F satisfies F (0) = 0 and can be written as

F (x) = JF (0)x+G(x)

where G : Rn ! Rn is a C1 function satisfying G(0) = 0 and JG(0) = 0.
Let �1, . . . ,�k be the, not necessarily distinct, negative real eigenvalues

of JF (0), and let aj ± ibj , with j = 1, . . . , 12(n� k), be the, not necessarily
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distinct, couples of conjugate complex eigenvalues with aj < 0. For simplic-
ity we also assume that JF (0) is written in Jordan normal form, therefore

JF (0) = diag
⇣
⇤1, . . . ,⇤h, B1, . . . Bm

⌘

where the ⇤j ’s are the Jordan blocks relative to the real eigenvalues, and
the Bj ’s are the Jordan blocks relative to the complex eigenvalues.

Let us consider the following change of variables. For " > 0 let y =
(y1, . . . , yn) be defined as follows:

• if (xm, . . . , xm+s�1) are the components of x corresponding to a Jordan
block ⇤j , we let ym+` := "�`xm+` for ` = 0, . . . , s� 1;

• if (xp, . . . , xp+2s�1) are the components of x corresponding to a Jordan
block Bj , we let yp+2` := "�`xp+2` and yp+2`+1 := "�`xp+2`+1, for
` = 0, . . . , s� 1.

Then it is a standard computation to verify that y satisfies the ODE

ẏ = A"y + G̃(y),

with G̃(0) = 0 and JG̃(0) = 0 and

A" = diag
⇣
⇤̃1, . . . , ⇤̃h, B̃1, . . . B̃m

⌘
,

where

⇤̃j =

0

BBBBBBBBBB@

�j " 0 . . . 0 0

0 �j " 0 . . . 0

. . . . . . . . . . . . . . . . . .

0 . . . 0 �j " 0

0 . . . . . . 0 �j "

0 . . . . . . . . . 0 �j

1

CCCCCCCCCCA

and

B̃j =

0

BBBBBBBBBB@

Rj "I2 0 . . . 0 0

0 Rj "I2 0 . . . 0

. . . . . . . . . . . . . . . . . .

0 . . . 0 Rj "I2 0

0 . . . . . . 0 Rj "I2

0 . . . . . . . . . 0 Rj

1

CCCCCCCCCCA

, with Rj =

✓
aj �bj
bj aj

◆
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and I2 the 2⇥ 2 identity matrix.
We now show that V (y) =

P
n

i=1 y
2
i
is a strict Lyapunov function for 0.

It is enough to study the derivative V̇ (y) = 2
P

n

i=1 yiẏi.
If (ym, . . . , ym+s�1) are the components of y corresponding to a Jordan

block ⇤̃j we have

s�1X

`=0

ym+` ẏm+` =
s�2X

`=0

ym+`(�jym+` + "ym+`+1) + �jy
2
m+s�1 +O(|y|3) =

 �j

s�1X

`=0

y2
m+`

+
"

2
(y2m + y2m+s�1) + "

s�2X

`=1

y2
m+`

+O(|y|3) 

 (�j + ")
s�1X

`=0

y2
m+`

+O(|y|3).

With an analogous argument, if (ym, . . . , ym+2s�1) are the components of y

corresponding to a Jordan block B̃j we have

s�1X

`=0

(ym+2` ẏm+2` + ym+2`+1 ẏm+2`+1) =

=
s�2X

`=0

ym+2` (ajym+2` � bjym+2`+1 + "ym+2`+2)+

+
s�2X

`=0

ym+2`+1 (bjym+2` + ajym+2`+1 + "ym+2`+3)+

+ ym+2s�2 (ajym+2s�2 � bjym+2s�1) + ym+2s�1 (bjym+2s�2 + ajym+2s�1)+

+O(|y|3) =

= aj

s�1X

`=0

(y2
m+2` + y2

m+2`+1) + "
s�2X

`=0

⇣
ym+2` ym+2`+2 + ym+2`+1 ym+2`+3

⌘
+

+O(|y|3) 

 (aj + ")
s�1X

`=0

(y2
m+2` + y2

m+2`+1) +O(|y|3).
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If we fix " > 0 such that (�j + ") < 0 and (aj + ") < 0 for all eigenvalues
of JF (0), letting µ 2 R� satisfy (�j + ")  µ < 0 and (aj + ")  µ < 0 for
all j, we have proved that

V̇ (y)  2µ|y|2 +O(|y|3).

We need to show that there exists � > 0 such that V̇ (y) < 0 for all y 2 B�(0)

and y 6= 0. By definition of O(·) functions, there exist c > 0 and �̃ > 0 such
that

O(|y|3)  c|y|3 , 8 y 2 B
�̃
(0).

If we choose � = min{�2µ
c
, �̃} it follows

V̇ (y)  2µ|y|2 + c|y|3 = |y|2(2µ+ c|y|) < 0, 8 y 2 B�(0) \ {0},

and the proof is finished.
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2.3 Integrals of motion and invariant sets

Conservative systems and first integrals

Definition 2.6. A C1 function I : Rn ! R is a first integral for a vector
field F : Rn ! Rn if İ(x) = 0 for all x 2 Rn, with İ(x) defined as in (2.1).

If I : Rn ! R is a first integral for a vector field F : Rn ! Rn, then
its level sets are invariant for the di↵erential equation ẋ = F (x), so that in
particular orbits of ẋ = F (x) lie in the level sets of I.

An important example of di↵erential equations with a first integral are
Hamiltonian systems with Hamiltonian function independent of time.

Definition 2.7. Let H : R2n ! R be a C1 function and use the notation
(x, y) for points in R2n, with x, y 2 Rn. The Hamiltonian vector field asso-
ciated to H is FH : R2n ! R2n given for i = 1, . . . , n, by (FH)i = @H/@yi
and (FH)(n+i) = �@H/@xi, and H is called the Hamiltonian function of the
field. The system of di↵erential equations in R2n with field FH is called the
Hamiltonian system of H.

A particular case are conservative mechanical systems with one degree
of freedom, systems which describe for example the motion in R of a point
of mass m under conservative forces. In this case the Hamiltonian function
has the form

H : R2 ! R , H(x, y) =
1

2m
y2 +W (x) (2.2)

where W (x) 2 C1 is the potential energy of the system. We recall that in
this case the Hamiltonian system associated to H is

(
ẋ = @H

@y
(x, y) = 1

m
y

ẏ = �@H

@x
(x, y) = �W 0(x)

and corresponds to the second-order di↵erential equation mẍ = �W 0(x).

Proposition 2.14. A C1 function H is a first integral for the Hamiltonian
vector field FH .

Proof. A simple computation gives

Ḣ = hrH , FHi =
nX

i=1

⇣@H
@xi

@H

@yi
� @H

@yi

@H

@xi

⌘
⌘ 0.
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Theorem 2.15 (Liouville theorem). A Hamiltonian system in R2n with C2

Hamiltonian function H preserves the 2n-dimensional Lebesgue measure of
the sets.

Proof. For A ⇢ R2n let �t(A) be the evolution of the set at time t, and let
m be the 2n-dimensional Lebesgue measure. Then

m(�t(A)) =

Z

�t(A)
1 dm =

Z

A

| det(J�t)| dm.

The variation equation of a di↵erential equation shows that J�t satisfies the
Cauchy problem

(
d

dt
J�t(x) = JFH(�t(x)) J�t(x)

J�t(x)|t=0 = I

where I is the identity matrix. The solution to the previous Cauchy problem
is then

J�t(x) = exp
⇣Z t

0
JFH(�s(x)) ds

⌘
I,

and using the identity det(exp(M)) = exp(tr(M)), valid for any finite square
matrix M , we obtain

det(J�t(x)) = exp
⇣Z t

0
tr(JFH(�s(x))) ds

⌘
.

Then

m(�t(A)) =

Z

A

exp

✓Z
t

0
div(FH)(�s(x)) ds

◆
dm.

Since

div(FH) =
nX

i=1

⇣ @2H

@xi@yi
� @2H

@yi@xi

⌘
⌘ 0,

it follows that
m(�t(A)) = m(A) , 8 t 2 R

and the proof is finished.

Corollary 2.16. A Hamiltonian system in R2n cannot have fixed points
which are sinks or sources.

Let us consider mechanical Hamiltonian systems with one degree of free-
dom with Hamiltonian function H(x, y) as in (2.2). Applying the general
theory of the previous sections and the results in this section, one can easily
prove the following characterisation of the fixed points.
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Proposition 2.17. Let H : R2 ! R be a C2 function written as in (2.2).
Then the fixed points of the associated Hamiltonian system are of the form
(x0, 0) with W 0(x0) = 0.
If W 00(x0) < 0 then (x0, 0) is a hyperbolic fixed point of saddle type, if
W 00(x0) > 0 it is not hyperbolic and it is a center.
If W 00(x0) = 0 the point (x0, 0) is not hyperbolic and one needs to use the
level sets of H(x, y) to study the dynamics in a neighbourhood of the point.

Example 2.4. The Hamiltonian function of a pendulum of massm and length
` in a vertical gravitational field with potential energy W (h) = mgh is

H(x, y) =
1

2m`2
y2 +mg`(1� cosx) ,

Consider the motion of this pendulum in presence of a constant friction
given by �µ y, with µ � 0.

Example 2.5. Study the system
(

ẋ = y

ẏ = x� x3 � µ y

with µ 2 R.

Invariant sets

It is in general di�cult to find explicit expressions for invariant sets. How-
ever, there are particular easy situations. For example, given a vector field
F : Rn ! Rn with F = (F1, . . . , Fn), if there exists c 2 R such that
Fi(x1, . . . , xi�1, c, xi+1, . . . , xn) = 0 for all xj 2 R with j 6= i, then the
hyperplane {xi = c} is an invariant set. This can be proved by the following
method.

Proposition 2.18. Let I : Rn ! R be a C1 function and for c 2 R let
Ic := {I(x) = c} be a non-empty level set of I such that rI|Ic 6⌘ 0. The
level set Ic is invariant for a vector field F : Rn ! Rn if İ|Ic ⌘ 0.

Proof. Let x0 2 Ic such that rI(x0) 6= 0. Then there exists a local di↵eren-
tiable change of coordinates y = h(x) such that in a neighbourhood U(x0)
we have Ic \ U = {yn = 0} and let x0 = (ỹ

0
, 0) with ỹ

0
2 Rn�1. Hence, in

these new coordinates rI 2 Span{(0, . . . , 0, 1)} in U .
Then, from İ|Ic ⌘ 0, we have that Fn|U ⌘ 0. Let F̃ : Rn�1 ! Rn�1 be

defined as F̃ (y1, . . . , yn�1) = (F1(y1, . . . , yn�1, 0), . . . , Fn�1(y1, . . . , yn�1, 0)).
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Then by the local uniqueness of the solutions to the system ẋ = F (x), the
solution with initial condition in x0 coincides in U with (�̃t(ỹ0), 0), where �̃t

is the flow of the system ˙̃y = F̃ (ỹ). Hence, the solution is in Ic. This proves
the invariance of Ic.

Example 2.6. Given the system
8
<

:

ẋ = x2 � y � 1

ẏ = (x� 2)y

the lines y = 0, y = x+ 1 and y = 3x� 3 are invariant sets.

Stable and unstable manifolds

An important example of invariant sets is given by the stable and unstable
manifolds of a hyperbolic fixed point.

Definition 2.8. Let x0 be a fixed point of a vector field F : Rn ! Rn with
flow �t(·), and let U be a neighbourhood of x0. The local stable manifold
W s

loc
(x0) of x0 in U is the set

W s

loc
(x0) := {x 2 U : �t(x) 2 U for all t � 0, �t(x) ! x0 as t ! +1}

Analogously, the local unstable manifold W u

loc
(x0) of x0 in U is the set

W u

loc
(x0) := {x 2 U : �t(x) 2 U for all t  0, �t(x) ! x0 as t ! �1}

Theorem 2.19 (Stable and unstable manifolds). Let x0 be a fixed point of
a Ck, k � 1, vector field F : Rn ! Rn with flow �t(·). Let’s assume that x0
is hyperbolic and let Es(0) and Eu(0) be the stable and unstable eigenspaces
associated to the linear system ẏ = JF (x0)y. Then there exists " > 0 such
that there exist local stable and unstable manifolds, W s

loc
(x0) and W u

loc
(x0),

of x0 in B"(x0) with the following properties:

(i) W s

loc
(x0) and W u

loc
(x0) are unique in B"(x0);

(ii) W s

loc
(x0) is forward invariant, and W u

loc
(x0) is backward invariant;

(iii) W s

loc
(x0) and W u

loc
(x0) are Ck manifolds, dimW s

loc
(x0) = dimEs(0)

and dimW u

loc
(x0) = dimEu(0);

(iv) W s

loc
(x0) is tangential to x0 + Es(0) at x0, and W u

loc
(x0) is tangential

to x0 + Eu(0) at x0.
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Proof of Theorem 2.19 in R2 (see [HSD]). Without loss of generality, let’s
assume that the fixed point is (x0, y0) = (0, 0). If dimEs = 2 or dimEu =
2, the proof is trivial since in these cases either W s

loc
(0, 0) or W u

loc
(0, 0),

respectively, coincide with a ball around (0, 0) and the properties of the
statement follow from the Hartman-Grobman Theorem 2.8.

The interesting case is when dimEs = dimEu = 1 and (0, 0) is a saddle.
Up to a change of variables, we can assume that the system is written as

(
ẋ = ��x+ f(x, y)

ẏ = µ y + g(x, y)
(2.3)

with �, µ > 0, f, g 2 Ck with f(0, 0) = g(0, 0) = 0, and f, g = O(x2 + y2)
if k � 2, and f, g, @xf, @yf, @xg, @yg = o(

p
x2 + y2) if k = 1. Hence, Es =

Span{(1, 0)} and Eu = Span{(0, 1)}.
We give the proof for the local stable manifold, it follows analogously for

the local unstable one. For any " > 0 and M > 1, introduce the following
notations:

D" := {|x|  ", |y|  "} , CM := {|x| � M |y|} ,

S±

" := CM \ {x = ±"} , C±

M
:= CM \ {x ? 0} .

(2.4)

The proof is divided into di↵erent steps.

Step I. There exists "0 > 0 such that for all M > 1 we have ẋ|
D"\C

±

M
7 0.

By assumption, there exists " > 0 such that

|f(x, y)|  �

2
p
2

p
x2 + y2 , 8 (x, y) 2 D".

Then, on D" \ C+
M
, we have

ẋ = ��x+ f(x, y)  ��x+
�

2
p
2

p
x2 + y2 

 ��x+
�

2
p
2

s

x2
✓
1 +

1

M2

◆
 x

✓
��+

�

2

◆
= ��

2
x < 0.

Similarly, on D" \ C�

M
, we have

ẋ = ��x+ f(x, y) � ��x� �

2
p
2

p
x2 + y2 �

� ��x� �

2
p
2

s

x2
✓
1 +

1

M2

◆
� |x|

✓
�� �

2

◆
=

�

2
|x| > 0.
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Step II. For any M > 1, there exists "1 = "1(M) > 0 such that for " 2 (0, "1)
on the boundary of D" \ CM the field F points towards the outside of CM .
First of all, we consider " 2 (0, "0) with "0 from Step I. Let us study the
case x, y > 0. We have ẋ|

@(D"\C
+
M ) < 0. It is then enough to prove that

ẏ|
@(D"\C

+
M ) > 0. Fixed M > 1, by assumption, there exists "1 < "0 such

that for " 2 (0, "1)

|g(x, y)|  µ

2
p
1 +M2

p
x2 + y2 , 8 (x, y) 2 D".

Then, on @(D" \ C+
M
), we have

ẏ = µ y + g(x, y) � µ y � µ

2
p
1 +M2

p
x2 + y2 =

= µ y � µ

2
p
1 +M2

p
y2(M2 + 1) = y

⇣
µ� µ

2

⌘
=

µ

2
y > 0.

The other cases follow analogously.

Step III. For " 2 (0, "1), on S+
" there exist non-empty open intervals I+ and

I� such that for all (x0, y0) 2 I± the orbit �t(x0, y0) intersects @(D"\C+
M
)\

{y ? 0}.
The existence and the properties of the intervals I+ and I� follow from Steps
I and II, and from the local uniqueness and the continuity with respect to
the initial conditions of the solutions to (2.3).

Step IV. There exists "2 < "1 such that for " 2 (0, "2) The set S+
" \ (I+[ I�)

consists of a single point (", ȳ+(")).
By the properties of the solutions to (2.3), there exist y1, y2 such that

S+
" \ (I+ [ I�) = {(", y) : y 2 [y1, y2]} .

We need to show that y1 = y2 = ȳ+.

Let’s assume that y1 < y2. It is known that multiplying a vector field
F (x, y) by a non-vanishing function h(x, y), the orbits of the system do
not change but only their time-parametrisation is a↵ected. Let h(x, y) =
1/(�� f(x, y)/x) in D" \ CM . Then the system in D" \ CM becomes

8
<

:

ẋ = �x

ẏ = µ y+g(x,y)

��
f(x,y)

x

= µ

�
y + g̃(x, y)

(2.5)
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with g̃, @y g̃ = o(
p

x2 + y2). There exists "2 < "1 such that for all M > 1
and all " 2 (0, "2) we have

����
@g̃

@y
(x, y)

���� 
µ

2�
p
2

p
x2 + y2 , 8 (x, y) 2 D".

Then the solutions to (2.5) with initial condition (", y) are of the form
(" e�t, y(t)). Hence, we can compute the vertical distance between the or-
bits �t(", y1) and �t(", y2) by computing the distance y2(t) � y1(t) of the
second components of the solutions to (2.5) with initial conditions (", y1)
and (", y2). We have

d

dt
(y2(t)� y1(t)) =

µ

�
y2(t) + g̃(" e�t, y2(t))�

µ

�
y1(t) + g̃(" e�t, y1(t)) =

=
µ

�
(y2(t)� y1(t)) +

@g̃

@y
(" e�t, ⇠(t)) (y2(t)� y1(t)) �

� (y2(t)� y1(t))

 
µ

�
� µ

2�
p
2
" e�t

r
1 +

1

M2

!
�

� µ

2�
(y2(t)� y1(t)).

Hence, (y2(t) � y1(t)) ! +1, which contradicts that the orbits of the set
S+
" \ (I+ [ I�) are forward asymptotic to (0, 0). We have thus proved that

y1 = y2 = ȳ+.

Conclusion part I.
By Steps I-IV, for all M > 1 there exists "2 = "2(M) > 0 such that for
all " 2 (0, "2) we obtain the existence of a unique point (", ȳ+(")) in S+

"

whose orbit is forward asymptotic to (0, 0). Therefore, fixing a M̄ > 1 the
local stable manifold W s

loc
(0, 0) in D"\C+

M
for all " 2 (0, "2(M̄)) is given by

the forward orbit of the point ("2(M̄), ȳ+("2(M̄))). An analogous argument
shows the existence of the local stable manifold W s

loc
(0, 0) in D" \ C�

M
for

all " 2 (0, "2(M̄)).
This shows the uniqueness of W s

loc
(0, 0), its forward invariance, its reg-

ularity since the orbits of a system inherit the regularity of the vector field,
and that its dimension is 1. It remains to prove that W s

loc
(0, 0) is tangent

at (0, 0) to Es = Span{(1, 0)}, that is to the x-axis.

Step V. Fixing a M̄ > 1, for all " 2 (0, "2(M̄)) the orbit �t(", ȳ+(")) has
vanishing angular coe�cient as t ! +1.
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Let (x"(t), y"(t)) denote the two components of �t(", ȳ+(")). We need to
show that y"(t)/x"(t) ! 0 as t ! +1.

By the local uniqueness of the solutions to (2.3), for all " 2 (0, "2(M̄))
the point (", ȳ+(")) is in the orbit of ("0, ȳ+("0)) for all "0 2 (", "2(M̄)). This
shows that, for all " 2 (0, "2(M̄)), for all t � 0 there exists "̃(t) < " such that
(x"(t), y"(t)) = ("̃(t), ȳ+("̃(t))). Hence, as t ! +1 we have "̃(t) ! 0+ so
that (x"(t), y"(t)) is in \

M̄MM̃(t)C
+
M

for some M̃(t) ! +1. This shows

that y"(t)/x"(t)  1/M̃(t) ! 0+ as t ! +1.

Conclusion part II.
Step V concludes the proof of the theorem.

Given a hyperbolic fixed point x0, one can introduce a notion of global
stable and unstable manifolds. However, these sets in general have weaker
properties than the local counterparts.

Definition 2.9. Let x0 be a hyperbolic fixed point of a Ck, k � 1, vector
field F : Rn ! Rn with flow �t(·). The global stable and unstable manifolds
of x0 are defined as

W s(x0) :=
[

t0

�t(W
s

loc
(x0)) , W u(x0) :=

[

t�0

�t(W
u

loc
(x0)), (2.6)

where W s,u

loc
(x0) are the local manifolds in B"(x0) for some " > 0.

It is interesting to analyse the possible intersection of the global stable
and unstable manifolds. By the local uniqueness of the solutions to an ODE,
the two global manifolds cannot intersect transversally. In R2 they can
coincide or end up at another saddle fixed point, giving rise to a homoclinic
or two heteroclinic orbits respectively. In Rn with n � 3 more interesting
phenomena occurs, and some imply the existence of “chaotic” phenomena
(see Section 3.4).



2.4. MOTION IN THE PLANE AND PERIODIC ORBITS 45

2.4 Motion in the plane and periodic orbits

In this section we consider a system of di↵erential equations in R2

(
ẋ = f(x, y)

ẏ = g(x, y)
(2.7)

with Ck, k � 1, functions f, g : R2 ! R. We discuss methods to study the
phase space of (2.7) which work in two dimensions.

Polar coordinates

In R2, it is sometimes easier to study the phase space of a system when
using polar coordinates. Let

⌦ :=
�
(⇢, ✓) 2 R2 : ⇢ > 0 , 0  ✓  2⇡

 
/({✓ = 0} = {✓ = 2⇡}),

that is ⌦ is a strip in the plane with the upper and the lower boundary
identified, hence it is an open cylinder. The map  : ⌦ ! R2, (x, y) =
 (⇢, ✓), with (

x(⇢, ✓) = ⇢ cos ✓

y(⇢, ✓) = ⇢ sin ✓

is a di↵eomorphism from ⌦ to R2, with Jacobian det J (⇢, ✓) = ⇢. We can
then use  and its inverse to push a vector field F (x, y) = (f(x, y), g(x, y))
back to a vector field on ⌦. An easy computation shows that the system
(2.7) when written in polar coordinates reads

(
⇢̇ = f(⇢ cos ✓, ⇢ sin ✓) cos ✓ + g(⇢ cos ✓, ⇢ sin ✓) sin ✓

✓̇ = g(⇢ cos ✓,⇢ sin ✓) cos ✓�f(⇢ cos ✓,⇢ sin ✓) sin ✓

⇢

(2.8)

for all (⇢, ✓) 2 ⌦. In general one should not expect that the vector field in
polar coordinates can be continuously extended to the boundary {⇢ = 0} of
⌦. This is true only under particular conditions on the functions f, g.

An important application of the use of polar coordinates is the identi-
fication of circular periodic orbits. Using Proposition 2.18 one can show
that

Proposition 2.20. If there exists ⇢0 > 0 such that

f(⇢0 cos ✓, ⇢0 sin ✓) cos ✓ + g(⇢0 cos ✓, ⇢0 sin ✓) sin ✓ = 0 , 8 ✓ 2 [0, 2⇡]
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and ✓̇ 6= 0 for all (⇢, ✓) 2 {⇢ = ⇢0}, then the set

� = {⇢ = ⇢0} =
�
(x, y) 2 R2 : x2 + y2 = ⇢20

 

is a periodic orbit.

Isoclines

Here we introduce a method to find an analytic expression for the orbits of
(2.7) in special situations.

Proposition 2.21. Let (x0, y0) be a non-fixed point for (2.7). Then there
exists a neighbourhood U(x0, y0) such that the set O(x0, y0) \ U , that is the
orbit of (x0, y0) in U , is the graph of a function.
In particular, if f(x0, y0) 6= 0 there exist " > 0 and a Ck function h :
(x0 � ", x0 + ") ! R such that

O(x0, y0) \ (x0 � ", x0 + ") = {(x, h(x)) : x 2 (x0 � ", x0 + ")} ,

and h(x) satisfies the Cauchy system

8
>><

>>:

dy

dx
= g(x,y)

f(x,y)

y(x0) = y0

x 2 (x0 � ", x0 + ")

(2.9)

Instead, if g(x0, y0) 6= 0 the analogous statement holds by interchanging the
roles of x and y and of f and g.

Proof. If f(x0, y0) 6= 0 there exists " > 0 such that f(x, y) 6= 0 for all
(x, y) 2 B2"(x0, y0). Let h(x) be a solution to system (2.9) and define the
Ck function I(x, y) = y�h(x) on {x 2 (x0 � ", x0 + ")}\B2"(x0, y0). Then
with respect to system (2.7)

İ|{I=0} =
�
ẏ � h0(x) ẋ

�
|{I=0} =

�
g(x, y)� h0(x) f(x, y)

�
|y=h(x) =

= g(x, h(x))� h0(x) f(x, h(x)) ⌘ 0.

Therefore I0 := {y = h(x)} is an invariant set in a neighbourhood U(x0, y0)
containing (x0, y0). Then I0 = O(x0, y0)\U , and the proposition is proved.

The analogous argument works if g(x0, y0) 6= 0.

The solutions to system (2.9) are called isoclines for (2.7).
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Example 2.7 (Predator-prey Lotka-Volterra models). We apply the method
of finding isoclines to prove the existence of periodic orbits in a predator-
prey Lotka-Volterra system. Let x, y 2 R+

0 denote the population of two
species in a predator-prey relationship. The population x predates on the
population y, hence the system of di↵erential equations for x and y is of the
form (

ẋ = x (�A+ b1 y)

ẏ = y (B � b2 x)
(2.10)

with A,B, b1, b2 > 0. The system has two fixed points, P0 = (0, 0) and
P1 = (B/b2 , A/b1). The point P0 is hyperbolic and it is a saddle with stable
and unstable manifolds given by the x and y axis respectively, whereas the
point P1 is not hyperbolic being a center.

Let us find the isoclines of (2.10). When x0 6= 0 and y0 6= A/b1 we can
write (

dy

dx
= y (B�b2 x)

x (�A+b1 y)

y(x0) = y0

which has a local solution given implicitly by the equality
Z

y

y0

�A+ b1 y

y
ds =

Z
x

x0

B � b2 x

x
dt , I(x, y) = I(x0, y0)

where
I(x, y) := A log y +B log x� b1 y � b2 x .

We have thus found that I(x, y) is a first integral for (2.10), hence the orbits
lie on its level sets. Then, it is immediate to find that I(x, y) has a point
of global minimum at P1, therefore the levels sets {I(x, y) = c} are closed
curves for c bigger than I(P1) but su�ciently close to it. Hence, the orbits
on these level sets are periodic3.

The field and the symmetries of the system

Here we introduce two ideas to draw the phase portrait of a system. Both
ideas work in all dimensions but are particularly simple to apply in the two
dimensional case.

The first idea uses the property of the field to be tangent to the orbits
of a system. Therefore, in principle, one can obtain the orbits of a system
simply by drawing the field in all the points of the phase space. In practice,

3
It can be proved that all level sets are closed curves, therefore all orbits di↵erent from

the axes and the fixed points are periodic.
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it is useful to draw the behaviour of the field on some curves. For example,
it is a good idea to draw the lines on which the single components of the field
vanish (the intersection of these lines give the fixed points) and to obtain
the direction of the field in all the regions of the phase space between these
lines.

A more theoretical idea to apply is to look for symmetries of the system.
Given a vector field F : Rn ! Rn, the associated system ẋ = F (x), and a
di↵eomorphism S : Rn ! Rn, we give the following definition.

Definition 2.10. Given a vector field F : Rn ! Rn and a di↵eomorphism
S : Rn ! Rn, we say that the system ẋ = F (x) is symmetric with respect
to S if

dxS(F (x)) = ±F (S(x)) , 8x 2 Rn .

A simple case is the case of systems symmetric with respect to linear
transformations. That is there exists an invertible matrix S 2 M(n⇥ n,R)
such that S F (x) = ±F (S x).

Proposition 2.22. If the system (2.7) in R2 is symmetric with respect to
a di↵eomorphism S, given a trajectory (x(t), y(t)) of the system, the curve
(x̃(t), ỹ(t)) defined as

(x̃(t), ỹ(t)) =

(
S(x(t), y(t)) , if dxS(F (x)) = F (S(x)),

S(x(�t), y(�t)) , if dxS(F (x)) = �F (S(x)),

is a solution to (2.7).

Proof. It is enough to compute ( ˙̃x(t), ˙̃y(t)).

Example 2.8. We show how the proposition works in two easy cases. Let us
consider the system (2.7) with the assumption that f(�x,�y) = �f(x, y)
and g(�x,�y) = �g(x, y). The field F (x, y) = (f(x, y), g(x, y)) satisfies
F (�x,�y) = �F (x, y), hence it is symmetric with respect to the linear
transformation S(x, y) = (�x,�y) and

d(x,y)S(F (x, y)) = �F (x, y) = F (S(x, y)).

Then, given a trajectory (x(t), y(t)) of the system, we show that another
trajectory is given by (x̃(t), ỹ(t)) = (�x(t),�y(t)). Indeed, we have

˙̃x(t) = �ẋ(t) = �f(x(t), y(t)) = f(�x(t),�y(t)) = f(x̃(t), ỹ(t)) ,

˙̃y(t) = �ẏ(t) = �g(x(t), y(t)) = g(�x(t),�y(t)) = g(x̃(t), ỹ(t)) .
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The other case considered in the proposition is obtained for Hamiltonian
systems in R2 with Hamiltonian function of the form (2.2). In this case the
field is F (x, y) = (y,�W 0(x)) and the system is symmetric with respect to
the linear transformation S(x, y) = (x,�y) since

d(x,y)S(F (x, y)) = (y,W 0(x)) = �F (x,�y) = �F (S(x, y)) .

Then, given a trajectory (x(t), y(t)) of the system, we show that another
trajectory is given by (x̃(t), ỹ(t)) = (x(�t),�y(�t)). Indeed,

˙̃x(t) = �ẋ(�t) = �y(�t) = ỹ(t) ,

˙̃y(t) = ẏ(�t) = �W 0(x(�t)) = �W 0(x̃(t)) .

Periodic orbits: non-existence

We describe two methods to prove non-existence of periodic orbits in a region
of the phase space. The first is of pure topological nature and the second
uses the analytical nature of the di↵erential equation (2.7).

Definition 2.11. Let � ⇢ R2 be a simple closed curve. Given a vector field
F (x, y) = (f(x, y), g(x, y)) without fixed points on �, the Poincaré index of
�, denoted by IF (�), is the number of turns that F makes counterclockwise
as a point goes round �. It can be computed as

IF (�) :=
1

2⇡

Z

�
d

✓
arctan

g

f

◆
=

1

2⇡

Z

�

f dg � g df

f2 + g2

Proposition 2.23. Given a vector field F on R2, the Poincaré index of a
curve has the following properties:

(i) let t 7! �t be a continuous family of simple closed curves, then IF (�t)
is constant as long as no �t contains a fixed point of F ;

(ii) let � be a simple closed curve not containing fixed points of F which
can be written as � = �1 + �2, where �1 and �2 are two simple closed
curves not containing fixed points of F . Then IF (�) = IF (�1)+IF (�2);

(iii) if � is a periodic orbit then IF (�) = +1.

Definition 2.12. Let (x0, y0) be an isolated fixed point of a vector field
F . The Poincaré index of (x0, y0), IF (x0, y0), is the Poincaré index of any
simple closed curve � encircling (x0, y0) and no other fixed point of F .
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Proposition 2.24. Let (x0, y0) be a fixed point of a C1 vector field F on
R2 with det(JF (x0, y0)) 6= 0. Then:

(i) if (x0, y0) is a node, a star, an improper node, a focus or a centre,
then IF (x0, y0) = +1;

(ii) if (x0, y0) is a saddle, then IF (x0, y0) = �1.

Putting together Propositions 2.23 and 2.24, we obtain information on
regions of a phase space where a periodic orbit may exist or not. For exam-
ple, it may not exist a periodic orbit encircling only a saddle. Each periodic
orbit has to encircle sets of isolated fixed points for which the sum of their
Poincaré indices is +1.

Example 2.9. Let us consider the system
8
<

:

ẋ = x

ẏ = y2

then IF (0, 0) = 0.

Example 2.10. Let us consider the system
8
<

:

ẋ = x2 � y2

ẏ = 2xy

then IF (0, 0) = 2.

Proposition 2.25 (Curl method). Let U ⇢ R2 be a simply connected open
set and assume that the vector field F (x, y) = (f(x, y), g(x, y)) satisfies

@f

@y
(x, y) =

@g

@x
(x, y) , 8 (x, y) 2 U

Then in U there exist no periodic orbits for the vector field F .

Proof. Let � ⇢ U be a periodic orbit of period T parametrised by the
solution �(t) of the Cauchy problem

8
>><

>>:

ẋ = f(x, y)

ẏ = g(x, y)

(x(0), y(0)) = �(0)
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Then �(T ) = �(0) and �0(t) = F (�(t)) for all t 2 R.
By assumption and Poincaré’s lemma, the vector field F is conservative

in U , that is there exists a C1 function h : U ! R such that F = rh. Then

0 = h(�(T ))� h(�(0)) =

Z
T

0

d

dt
(h � �)(t) dt =

Z
T

0

⌦
rh(�(t)), �0(t)

↵
dt =

=

Z
T

0
hF (�(t)), F (�(t))i dt =

Z
T

0
kF (�(t))k2 dt

which is a contradiction because kF (�(t))k 6= 0 for all t.

Remark 2.26. The curl method can be easily extended to a di↵erential equa-
tion in Rn with vector field F . By repeating the last part of the proof of
Proposition 2.25 one can show that

Proposition 2.27 (Gradient systems). If there exists h : Rn ! R such that
F = rh, then there are no periodic orbits for the di↵erential equations
ẋ = F (x).

Proposition 2.28 (Bendixson-Dulac method). Let U ⇢ R2 be a simply
connected open set and assume that there exists a C1 function ⇢ : U ! R
such that for the vector field F (x, y) = (f(x, y), g(x, y)) it holds

@(⇢ · f)
@x

(x, y) +
@(⇢ · g)
@y

(x, y) > 0 (or < 0) , 8 (x, y) 2 U

Then in U there exist no periodic orbits for the vector field F .

Proof. Let � ⇢ U be a periodic orbit of period T and let A be the region
enclosed by �. Then applying Gauss-Green Theorem

0 <

ZZ

A

✓
@(⇢ · f)
@x

(x, y) +
@(⇢ · g)
@y

(x, y)

◆
dxdy =

Z

�
(�⇢ g dx+ ⇢ f dy) =

=

Z
T

0
⇢(x(t), y(t)) (�g(x(t), y(t)) ẋ(t) + f(x(t), y(t)) ẏ(t)) = 0

where we have used that � = (x(t), y(t)) for t 2 [0, T ] and (x(t), y(t)) is a
solution of the di↵erential equation associated to the vector field F .

Example 2.11 (Species in competition). In Example 2.7 we have shown that
predator-prey Lotka-Volterra models admit periodic orbits. Now we show
that there are no periodic orbits in a Lotka-Volterra model for species in
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competition. Let x, y 2 R+
0 denote the population of two species in com-

petition for the same resources on a finite environment. The system of
di↵erential equations for x and y is of the form

(
ẋ = x (A� a1 x� b1 y) = f(x, y)

ẏ = y (B � b2 x� a2 y) = g(x, y)
(2.11)

with A,B, a1, a2, b1, b2 > 0.
The axes are invariant sets, hence the simply connected set

U =
�
(x, y) 2 R2 : x > 0, y > 0

 

is also invariant. Consider the C1 function ⇢(x, y) = 1/(xy) on U . We have

@(⇢ · f)
@x

(x, y) +
@(⇢ · g)
@y

(x, y) = �a1
y

� a2
x

< 0 , 8 (x, y) 2 U.

Hence, by Proposition 2.28, there are no periodic orbits in U .

Remark 2.29. The Bendixson-Dulac method uses the divergence of a vector
field. For di↵erential equations in Rn, n � 3, it gives di↵erent information.

Proposition 2.30. Let F : Rn ! Rn be a C1 vector field such that there exists
a constant k > 0 for which div(F )(x)  �k for all x 2 Rn. Then the flow
associated to F contracts the volumes.

Proof. For A ⇢ Rn let �t(A) be the evolution of the set at time t, and let
m be the n-dimensional Lebesgue measure. By applying the same ideas in
the proof of Liouville Theorem 2.15, we obtain

vol(�t(A)) =

Z

A

exp

✓Z
t

0
div(F )(�s(x)) ds

◆
dm.

If div(F )(x)  �k for all x 2 Rn then

vol(�t(A))  e�kt vol(A) , 8 t � 0,

and the proof is finished.

Periodic orbits: existence in general

Theorem 2.31 (Poincaré - Bendixson). Let F be a C1 vector field in R2,
and assume that there exists a non-empty region D ⇢ R2 which is compact
and does not contain fixed points of F . If for some x0 there exists t0 such
that �t(x0) 2 D for all t � t0, then there exists a periodic orbit � ⇢ D and
� = !(x0).
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For the proof we need some preliminaries. Given the di↵erential equation
ẋ = F (x) in R2 with F 2 C1 and any non-fixed point y of F , we call
transversal line at y the line `(y) which is the image of the curve � : R !
R2 with �(u) = y + uv, where v is a vector applied at y which satisfies⌦
v, F (y)

↵
= 0.

Definition 2.13. Given a non-fixed point y of F and a constant k 2 [0, 1),
we call k-wide local section at y the set Sk(y) obtained by taking the con-
nected component containing y of the set of points z 2 `(y) for which

| sin(\vF (z))| > k.

The k-wide local section at y is non-empty since y 2 Sk(y), and there
exists " > 0 such that �(�", ") ✓ Sk(y).

Proposition 2.32 (Local rectifiability of a vector field). Given a C1 vector
field F in R2, a non-fixed point y of F , and a k-wide local section at y, Sk(y),
there exists a di↵eomorphisms  : U(0) ! V (y) which maps horizontal lines
into the orbits of ẋ = F (x) passing through Sk(y). That is  (s, u) = �s(�(u))
for all (s, u) 2 U(0).

Applying Proposition 2.32, let � > 0 and N� := {(s, u) 2 U(0) : |s| <
�}. Then we call �-rectangle of flux in y the set N� :=  (N�). Then for
each z 2 N� there exists a unique s 2 (��,�) such that �s(z) 2 Sk(y).

Proposition 2.33. Given a C1 vector field F in R2, a non-fixed point y of
F , and a k-wide local section at y, Sk(y), let z be a point such that y = �t0(z)
for some t0. Then there exist " > 0 and a continuous function ⌧ : B"(z) ! R
such that �⌧(x)(x) 2 Sk(y) for all x 2 B"(z).

Proof. Let us define the function p : R2 ! R by p(x) =
⌦
x, F (y)

↵
. We notice

that p(x) = p(y) if and only if x 2 `(y), in fact if x = y + w then

p(x) = p(y) + p(w) = p(y) ,
⌦
w,F (y)

↵
= 0

Let then consider the regular function G : R2 ⇥ R ! R given by G(x, t) =
p(�t(x)). Then by definition G(z, t0) = p(�t0(z)) = p(y) and

@G

@t
(z, t0) = p(�̇t(x))

���
x=z,t=t0

= p(F (�t0(z))) = p(F (y)) = kF (y)k2 6= 0

Hence we can apply the Implicit Function Theorem to G at (z, t0) and prove
the existence of " > 0 and � > 0, and of a continuous function ⌧ : B"(z) !
(t0 � �, t0 + �) such that

p(y) = G(x, ⌧(x)) = p(�⌧(x)(x)) 8x 2 B"(z)

It follows that �⌧(x)(x) 2 Sk(y) for all x 2 B"(z).
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We are now ready to prove Poincaré-Bendixson Theorem.

Proof of Theorem 2.31. Choose x0 2 R2 such that there exists t0 for which
�t(x0) 2 D for all t � t0. By Proposition 1.1, the set !(x0) ⇢ D is non-
empty, compact, and invariant. For any x 2 !(x0) we show that O(x) is a
periodic orbit �, and that � = !(x0).

Fix x 2 !(x0), and let y 2 !(x) ⇢ !(x0), which is not a fixed point by
assumption. Consider a k-wide local section at y, Sk(y), and a �-rectangle
of flux N� in y.

Lemma 2.34. The forward orbit of x intersects Sk(y) exactly once.

Proof. Since y 2 !(x), there exists a point of O+(x) in N�, hence O+(x) \
Sk(y) 6= ;. Let’s assume by contradiction that there exist x1, x2 2 O+(x) \
Sk(y) with x1 6= x2. Since x 2 !(x0), also x1, x2 2 !(x0) by invariance
of the omega limit. Hence if N�(x1) and N�(x2) are disjoint �-rectangles
of flux, the forward orbit of x0 has countable points both in N�(x1) and in
N�(x2). By the properties of the rectangles of flux, this implies that O+(x0)
intersects Sk(y) countable many times, alternatively close to x1 and to x2.
We now show that this is not possible.

Let us denote by {z1, z2, . . . } the points in O+(x0)\Sk(y) cronologically
ordered, that is z1 = �t1(x0), z2 = �t2(x0), and so on, with t1 < t2 <
. . . . Given three points zn�1, zn, zn+1 and an ordering on Sk(y) it must
hold zn�1 < zn < zn+1 or zn+1 < zn < zn�1. Indeed let ⌃ denotes the
Jordan curve given by the segment ázn�1zn and the orbit [tn�1ttn�t(x0),
and let R be the region bounded by ⌃. Then �t(x0) 2 R for all t > tn,
because it cannot intersect any part of @R. It cannot intersect the orbit
[tn�1ttn�t(x0) by the uniqueness of solutions of a di↵erential equation,
and it cannot intersect the segment ázn�1zn which is in Sk(y), because the
vector field points in the same direction in all the points of a local section.
It follows that zn+1 2 R and it lies on the other side of zn�1 with respect to
zn. It follows that the countable intersections of O+(x0) with Sk(y) must
be ordered, so cannot be alternatively close to x1 and to x2. This shows
that the forward orbit of x intersects Sk(y) exactly once.

We have thus proved that O+(x) \ Sk(y) = {�t̄(x)}. Since y 2 !(x)
there is a sequence {tm} such that �tm(x) ! y, hence for m big enough
�tm(x) 2 N�. It follows that for m big enough, there exist ⌧m 2 R such that
�tm+⌧m(x) 2 Sk(y) for all m, hence �tm+⌧m(x) = �t̄(x) for all m. It follows
that there exists T > 0 such that �T (x) = x. We have thus proved that
O(x) is a periodic orbit �.
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It remains to show that � = !(x0). By invariance of the omega limit
� ⇢ !(x0). Let now y 2 � and consider a k-wide local section at y, Sk(y),
and a �-rectangle of fluxN� in y. As discussed above, there exists a sequence
{tm} such that �tm(x0) ! y and �tm(x0) 2 Sk(y), with �t(x0) 62 Sk(y) for
t 2 (tm, tm+1) for all m. Since �T (y) = y, we can apply Proposition 2.33 and
find " > 0, � > 0, and a continuous function ⌧ : B"(y) ! (T � �, T + �) such
that �⌧(x)(x) 2 Sk(y) for all x 2 B"(y), and ⌧(y) = T . Hence, choosing "̃ < "
if necessary, we have �T (x) 2 N� for all x 2 B"̃(y). Since for m big enough
�tm(x0) 2 B"̃(y), it follows that �T (�tm(x0)) = �T+tm(x0) 2 N�, and there
exists sm 2 (��,�) such that �T+tm+sm(x0) 2 Sk(y). Since �t(x0) 62 Sk(y)
for t 2 (tm, tm+1), it must hold tm+1 = T+tm+sm, hence tm+1�tm  T+�
for all m big enough.

We now consider a fixed ⌘ > 0. By continuity of the flux �t, there
exists � > 0 such that if d(z1, z2) < � then d(�t(z1),�t(z2)) < ⌘ for all
t 2 (�T � �, T + �). Hence, for m big enough such that d(�tm(x0), y) < �,
we have

d
⇣
�t(�tm(x0)),�t(y)

⌘
< ⌘ 8 t 2 (�T � �, T + �)

Since y 2 �, so that O(y) = �, and tm+1� tm  T +� for all m big enough,
we have that

d
⇣
�t(x0),�

⌘
< ⌘ 8 t 2 (tm, tm+1)

for m big enough. We can conclude that d(�t(x0),�) ! 0 as t ! +1.
Hence !(x0) ⇢ �. This shows that � = !(x0), and concludes the proof of
the theorem.

Example 2.12. Let us consider the following system in polar coordinates

(
⇢̇ = ⇢(1� ⇢2) + " f(⇢, ✓)

✓̇ = 1 + " g(⇢, ✓)

with f, g 2 C1(R2). For " = 0 the system admits the orbitally asymptotically
stable periodic orbit � = {⇢ = 1}. We now show that there exists "0 > 0
such that for all " 2 (0, "0) there exists a periodic orbit �". Let

L = max
⇢5

(|f |+ |g|)

and "0 =
1
4L . We now prove that if " < "0 the set D =

�
1
2  ⇢  2

 
satisfies

the assumptions of Poincaré-Bendixson Theorem 2.31.
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First of all for all (⇢, ✓) 2 D

1 + " g(⇢, ✓) � 1� "L > 1� "0L =
3

4

so that D contains no fixed points of the system. Moreover

⇢̇|⇢=2 = �6 + " f(2, ✓) < �6 + "L < �6 + "0 L = �6 +
1

4
< 0

and

⇢̇|
⇢= 1

2
=

3

8
+ " f

✓
1

2
, ✓

◆
>

3

8
� "L >

3

8
� "0 L =

1

8
> 0

so that on @D the vector field is always directed towards the inside of D.
This implies that for all x 2 @D and for all t > 0 it holds �t(x) 2 D, and
completes the proof.

Finally, we state a result which extends Theorem 2.31 to the case of
regions with fixed points.

Theorem 2.35. Let F be a C1 vector field in R2, and let D ⇢ R2 be a non-
empty bounded positively invariant region containing at most a finite number
of fixed points for F . Then, for all x 2 D, the set !(x) is non-empty and
one of the following possibilities holds:

• !(x) is a fixed point;

• !(x) is a periodic orbit;

• !(x) consists of a finite number of fixed points and heteroclinic orbits
connecting them.
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2.6 Exercises

2.1. Draw the phase portrait of the linear system ẋ = Ax in R2 and find
the stable, unstable, and central eigenspace of 0, with A given by:

(a) A =

 
5 4

2 7

!
(b) A =

 
�8 0

1 �6

!
(c) A =

 
�8 6

�9 13

!

(d) A =

 
�8 4

�1 �4

!
(e) A =

 
4 1

�1 2

!
(f) A =

 
3 2

�1 1

!

(g) A =

 
�7 �5

1 �5

!
(h) A =

 
1 �2

�1 2

!
(i) A =

 
2 �4

1 �2

!

2.2. For the following systems, find the critical points and study their linear
stability.

(a)

(
ẋ = �2x(x� 1)(2x� 1)

ẏ = �2y
(b)

(
ẋ = x(4� 2x� y)

ẏ = y(3� x� y)

(c)

(
ẋ = �y + x3

ẏ = x+ y3
(d)

(
ẋ = e(x+y) + y

ẏ = y � xy

(e)

(
ẋ = 2xy

ẏ = y2 � x2
(f)

(
ẋ = x(60� 4x� 3y)

ẏ = y(42� 3x� 2y)

2.3. Find a Lyapunov function to study the stability of the fixed point (0, 0)
for the following systems:

(a)

(
ẋ = y � 3x3

ẏ = �x� 7y3
(b)

(
ẋ = �xy4

ẏ = yx4

(c)

(
ẋ = x� xy4

ẏ = y � y3x2
(d)

(
ẋ = x2 � xy � x

ẏ = y2 + 2xy � 7y
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2.4. Determine the stability of the fixed point (0, 0) varying µ 2 R for the
system 8

>><

>>:

ẋ = (µx+ 2y)(z + 1)

ẏ = (�x+ µy)(z + 1)

ż = �z3

2.5. Find the fixed points and study their stability varying µ 2 R, µ 6= 4,
for the system 8

>><

>>:

ẋ = µx3 � x5

ẏ = (2µy + z)(x� 2)

ż = (�2y + µz)(x� 2)

2.6. Draw the phase portrait for a mechanical Hamiltonian system with
H(x, y) of the form (2.4) with m = 1 and potential energy W given by:

(a) W (x) = 1
3x

2 + 1
9x

3 � 1
4x

4;

(b) W (x) = x log(1 + x2);

(c) W (x) =

(
e�x

2
, x  0

cos(
p
2x) , x � 0

;

(d) W (x) = � sinx

x
.

2.7. Consider the system
(

ẋ = 1
2y

ẏ = �(1 + µ)x+ µx2 + x3

varying µ 2 R. Show that it is a mechanical Hamiltonian system writ-
ing down the Hamiltonian function. Let denote by (xµ(t, 0), yµ(t, y0)) the
solution to the system with initial condition (x(0), y(0)) = (0, y0), then find

y⇤(µ) := inf{y0 > 0 : lim
t!+1

xµ(t) = +1} .

2.8. Draw the phase portrait for the following systems:

(a)

(
ẋ = y � x2

ẏ = x� 2
(b)

(
ẋ = sinx (�0.1 cosx� cos y)

ẏ = sin y (cosx� 0.1 cos y)
on [0,⇡]2
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(c)

(
ẋ = x2 � 1

ẏ = �xy + x2 � 1
(d)

(
ẋ = y cosx

ẏ = sinx

(e)

(
ẋ = y

ẏ = x3 � x
(f)

(
ẋ = y

ẏ = x3 � x+ 1
2y

2.9. For the following systems, study the existence of a periodic orbit en-
tirely contained in {x2 + y2 � 2}:

(a)

(
ẋ = x3 � x+ y2

ẏ = �2y
(b)

8
<

:
ẋ = x

3

1+x4+y4

ẏ = y
3

1+x4+y4

2.10. Study the existence of a periodic orbit for the system

(
ẋ = x

p
x2 + y2 � 3x (x2 + y2) + 1

10y
5

ẏ = y
p
x2 + y2 � 3y (x2 + y2)� 1

10x
5



Chapter 3

Discrete-time dynamical

systems

In this chapter we consider discrete-time dynamical systems as defined in
Definition 1.2. Hence we need to specify a set X and a map T : X ! X.
The properties of X and T may vary and give rise to di↵erent areas of
research. Here we assume that X is a locally compact connected metric
space and T is a continuous map, and call (X,T ) a discrete-time continuous
dynamical system. In many situations one can simply consider X to be an
interval of the real line, and in fact some results of this chapter hold only
for one-dimensional spaces X or even for compact intervals of the real line.

We start with simple definitions.

Definition 3.1. Let (X,T ) and (X̃, T̃ ) be two discrete-time continuous
dynamical systems. We say that (X̃, T̃ ) is a topological factor of (X,T ) if
there exists a continuous map h : X ! X̃ that is surjective and satisfies

T̃ � h = h � T . (3.1)

If the map h : X ! X̃ is a homeomorphism and satisfies (3.1) then we
say that (X,T ) and (X̃, T̃ ) are topologically conjugate and h is a topological
conjugacy.

Example 3.1. Let’s consider the full shift (⌦A,N0,�) on two symbols A =
{0, 1} of Example 1.8, and the Bernoulli map T2 on S1 of Example 1.7.
Let J0 = [0, 1/2) and J1 = [1/2, 1) be a partition of S1, and let the map
h : ⌦{0,1} ! S1 be defined by

! = (!i)i2N0 7! h(!) =
\

i2N0

T�i

2 (J!i) .

61
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The map h is continuous and surjective, and satisfies T2 � h = h � �. Then
the Bernoulli map is a topological factor of the full shift on two symbols.

Example 3.2. Let’s consider the Tent map Ts with s = 2 of Example 1.5, and
the logistic map T� with � = 4 of Example 1.6. Let the map h : [0, 1] ! [0, 1]
be defined by

[0, 1] 3 x 7! h(x) = sin2
⇣⇡
2
x
⌘
.

The map h is a homeomorphism, and satisfies T4 � h = h � T2. Hence the
Tent map Ts with s = 2 is topologicall conjugate to the logistic map T� with
� = 4.

Remark 3.1. In some situations it is interesting to study the regularity of a
conjugacy. For example, if T and T̃ are Ck maps, with k 2 N0 [ {1,!}, a
natural question is whether there exists a conjugacy h between the systems
(X,T ) and (X̃, T̃ ) which is of class Ck. If it exists we say that (X,T ) and
(X̃, T̃ ) are Ck conjugate.

3.1 Stability in one dimension

Let T : X ! X be a continuous map of a one-dimensional space X =
[a, b], (a, b), [a,+1), (a,+1), (�1, b], (�1, b),R, S1.

Definition 3.2. A fixed point x0 2 X of T is called attractive if there exists
� > 0 such that, for all x 2 B�(x0), one has Tn(x) 2 B�(x0) for all n � 0,
and Tn(x) ! x0 as n ! +1.
A fixed point x0 2 X is called repulsive if there exists � > 0 such that, for
all x 2 B�(x0), x 6= x0, there exists n̄ 2 N for which T n̄(x) 62 B�(x0).

To study the dynamics in a neighbourhod of a fixed point x0, first it is
useful to try the linearization approach. Let T be di↵erentiable at x0. Then,
there exists " > 0 such that for all x 2 B"(x0)

T (x) = T (x0)+T 0(x0)(x�x0)+o(|x�x0|) = x0+T 0(x0)(x�x0)+o(|x�x0|) .

Hence,
|T (x)� x0| = |T 0(x0)| |x� x0|+ o(|x� x0|) . (3.2)

We deduce that, at the first order, it is the derivative T 0(x0) which may
determine whether the orbit of a point x 2 B"(x0) gets closer or further
from the fixed point x0. This justifies the following definition.

Definition 3.3. Let T be di↵erentiable at a fixed point x0. The fixed point
x0 2 X is called hyperbolic if |T 0(x0)| 6= 1.



3.1. STABILITY IN ONE DIMENSION 63

Theorem 3.2. Let x0 be a hyperbolic fixed point for a map T which is
di↵erentiable at x0. If |T 0(x0)| < 1 then the point is attractive, if |T 0(x0)| > 1
then the point is repulsive.

Proof. Let |T 0(x0)| < 1 and fix c 2 (|T 0(x0)|, 1). If we choose � > 0 such
that |T 0(x)|  c for all x 2 B�(x0), then we have that for all n � 1

|Tn(x)� x0|  cn |x� x0| , 8x 2 B�(x0) . (3.3)

From (3.3) and c 2 (0, 1), it follows that Tn(x) 2 B�(x0) for all n � 0 and
Tn(x) ! x0 as n ! +1.

We now prove (3.3) by induction. For n = 1, for all x 2 B�(x0) there
exists ⇠1 between x and x0 such that

|T (x)� x0| = |T (x)� T (x0)| = |T 0(⇠1)| |x� x0|  c |x� x0| ,

where |T 0(⇠1)|  c since ⇠1 2 B�(x0). Then, let’s assume that (3.3) holds for
a given n, and show that it holds for n+ 1. There exists ⇠n between Tn(x)
and x0 such that

|Tn+1(x)� x0| = |T (Tn(x))� T (x0)| = |T (⇠n)| |Tn(x)� x0| 

 c · cn |x� x0| = cn+1 |x� x0| ,
since ⇠n 2 B�(x0).

Let now |T 0(x0)| > 1, and first consider the case T 0(x0) > 1. Then we
fix c 2 (1, T 0(x0)) and choose � > 0 such that T 0(x) � c for all x 2 B�(x0).
We now argue by contradiction and assume that there exists x 2 B�(x0),
x 6= x0, such that Tn(x) 2 B�(x0) for all n � 1. Then, we can repeat the
argument above to show that

|Tn(x)� x0| � cn |x� x0| , 8n � 1 ,

from which we find that |Tn(x)� x0| ! +1 as n ! +1 since c > 1. This
gives the contradiction with the assumption Tn(x) 2 B�(x0) for all n � 1.

A similar argument works in the case |T 0(x0)| > 1 and T 0(x0) < �1.

When the fixed point is not hyperbolic, the approach in (3.2) suggests
that the higher derivatives of T at x0 may give some information.

Definition 3.4. A fixed point x0 2 X is called semi-attractive from the left
if there exists � > 0 such that it is attractive for points on (x0 � �, x0) and
repulsive for points on (x0, x0 + �). A fixed point x0 2 X is called semi-
attractive from the right if there exists � > 0 such that it is attractive for
points on (x0, x0 + �) and repulsive for points on (x0 � �, x0).
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Proposition 3.3. Let x0 be a fixed point for a map T which is di↵erentiable
at x0 with |T 0(x0)| = 1. The following possibilities hold:

(i) Let T 0(x0) = 1 and assume that T 2 C2(B"(x0)) for some " > 0, and
T 00(x0) 6= 0. Then,

– If T 00(x0) > 0, then x0 is semi-attractive from the left;

– If T 00(x0) < 0, then x0 is semi-attractive from the right;

(ii) Let T 0(x0) = 1 and assume that T 2 C3(B"(x0)) for some " > 0, that
T 00(x0) = 0, and T 000(x0) 6= 0. Then,

– If T 000(x0) > 0, then x0 is repulsive;

– If T 000(x0) < 0, then x0 is attractive;

(iii) Let T 0(x0) = �1 and assume that T 2 C3(B"(x0)) for some " > 0.
Then we look at ST (x0), the Schwarzian derivative of T at x0, where

ST (x) :=
T 000(x)

T 0(x)
� 3

2

✓
T 00(x)

T 0(x)

◆2

. (3.4)

Then,

– If ST (x0) > 0, then x0 is repulsive;

– If ST (x0) < 0, then x0 is attractive.

Proof. The proofs of (i) and (ii) are immediate from the graphical approach.
Let us prove (iii). Since T 0(x0) = �1, in a neighborhood of x0 the map T is
order-reversing. We look at G := T 2 for which G(x0) = x0, and use that x0
has the same stability for G and T . We have

G0(x) =T 0(T (x))T 0(x) ) G0(x0) = (T 0(x0))
2 = 1 ,

G00(x) =T 00(T (x)) (T 0(x))2 + T 0(T (x))T 00(x)

) G00(x0) = T 00(x0)
⇣
(T 0(x0))

2 � T 0(x0)
⌘
= 0 .

Moreover G 2 C3(B"(x0)), hence we can compute G000(x0). It holds

G000(x) =T 000(T (x)) (T 0(x))3 + 3T 00(T (x))T 0(x)T 00(x) + T 0(T (x))T 000(x)

) G000(x0) = T 000(x0)
⇣
(T 0(x0))

3 + T 0(x0)
⌘
+ 3 (T 00(x0))

2 T 0(x0)

) G000(x0) = 2ST (x0) .

The result follows from (ii).
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We conclude this section by studying the stability for periodic orbits.

Definition 3.5. Let x0 be a periodic point for T with minimal period p. The
orbit O(x0) is called attractive (respectively repulsive) if x0 is an attractive
(respectively repulsive) fixed point for T p.

Remark 3.4. Let x0 be a periodic point for T with minimal period p. If
T 2 C1, it is a straightforward corollary of the chain rule that the derivative
of T p is the same on all the points of the orbit of x0, i.e. (T p)0(T i(x0)) =
(T p)0(x0) for all i = 0, . . . , p� 1, since

(T p)0(x0) =
n�1Y

j=0

T 0(T j(x0)) .



66 CHAPTER 3. DISCRETE-TIME DYNAMICAL SYSTEMS

3.2 Existence of periodic orbits

In this section [a, b] denotes a compact interval of the real line. Given a
finite number of points {xk}k=0,...,n such that

a = x0 < x1 < x2 < · · · < xn�1 < xn = b ,

we consider the partition J of [a, b] into the closed intervals Jk = [xi�1, xi],
k = 1, . . . , n.

Definition 3.6. Given a partition J = {J`} of [a, b] and two not necessarily
distinct sets Jk and Jh of the partition, we say that Jk T -covers Jh m-times,
with m 2 N [ {1}, if there exist m open sub-intervals K1, . . . ,Km of Jk
such that Ki \Kj = ; for i 6= j, and T (ÑKi) = Jh for all i = 1, . . . ,m.

Definition 3.7. Given a partition J = {J`}`=1,...,n of [a, b], the T -graph of
J is a graph with nodes given by the indices {1, . . . , n}, and such that there
are m-arcs from a set Jk to a set Jh if Jk T -covers Jh m-times. An admissible
path of length s 2 N on the T -graph of J is a sequence Jp(1)Jp(2) . . . Jp(s)
with p(j) 2 {1, . . . , n} and such that there is at least one arc from Jp(j) to
Jp(j+1) for all j = 1, . . . , s� 1. An admissible path of length s 2 N is called
closed if p(s) = p(1).

Lemma 3.5. If Jp(1)Jp(2) . . . Jp(s)Jp(s+1) is an admissible closed path on the
T -graph of a partition J with s 2 N0, then there exists a point x 2 Jp(1)
which is periodic for T with period s and such that T j(x) 2 Jp(j+1) for all
j = 0, . . . , s.

Proof. Let us fix Ks+1 = J̊p(s+1). Since the path Jp(1)Jp(2) . . . Jp(s)Jp(s+1) is
admissible, there exists a family Kj ⇢ Jp(j), j = 1, . . . , s, of open intervals
such that T (Kj) = Kj+1. Hence there exists an intervalK1 ⇢ Jp(1) such that
T s(K1) = Ks+1 ◆ K1. The fixed-point theorem implies that there exists
x 2 ÑK1 such that T s(x) = x, moreover by construction T j(x) 2 ÜKj+1 ✓
Jp(j+1) for all j = 0, . . . , s.

Remark 3.6. It is important to notice that Lemma 3.5 does not prove the
existence of a periodic point with minimal period s. That the period s is
minimal may be obtained by looking at the path used in the proof of the
lemma.

Proposition 3.7. Let T : [a, b] ! [a, b] be a continuous map for which there
exists a periodic orbit of odd period m > 1. Then T admits periodic orbits
of minimal period n for all n > m, for all even n < m, and for n = 1.
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Proof. Let’s assume that m is the smallest odd number greater than 1 for
which T has a periodic orbit of period m1. In particular, m is the minimal
period of the orbit. Let us denote by p1, p2, . . . , pm the points of the periodic
orbit ordered in [a, b], so that T (p1) > p1 and T (pm) < pm. It follows that
there exists h̄ such that T (p

h̄
) > p

h̄
and T (pk) < pk for all k = h̄+1, . . . ,m.

Finally let J be the partition given by the points a, b and the points of
the periodic orbit p1, p2, . . . , pm, and let J0 := [a, p1], Jm := [pm, b], and
Jk := [pk, pk+1] for k 2 N := {1, . . . ,m � 1}. By construction and the
fact that m > 2 we have that one of the inequalities T (p

h̄+1)  p
h̄
and

T (p
h̄
) � p

h̄+1 is strict, hence J
h̄
T -covers itself at least once. By Lemma

3.5, this gives the result for n = 1.
We now proceed by proving intermediate statements.

Step 1. There exists an admissible path on the T -graph of the partition J
from J

h̄
to any set Jk of the partition with k 2 N .

Let us define by recurrence the following subsets of the nodes N of the
T -graph. We put N1 := {h̄},

N2 := {r 2 N : J
h̄
T -covers Jr} ,

and for i � 3

Ni := {r 2 N : 9 s 2 Ni�1 such that Js T -covers Jr} .

Since m > 2, each Js with s 2 N , T -covers at least one set Jr with r 6= s.
Moreover the fact that J

h̄
T -covers itself implies that h̄ 2 Ni for all i � 1,

hence {Ni} is a non-decreasing sequence of sets. We conclude that there
exists ` such that N` = N`+1 = N , since N` 6= N implies that m is not the
minimal period of the periodic orbit. This finishes the proof of this step.

Step 2. There exists k 2 N such that Jk T -covers J
h̄
.

We argue by contradiction. If the thesis of this step is false, all points pj of
the periodic orbit with j  h̄ have distinct images in the set {p

h̄+1, . . . , pm},
and analogously all points pj of the periodic orbit with j � h̄+1 have distinct
images in the set {p1, . . . , ph̄}. Since m is odd we get the contradiction.

Step 3. The T -graph of the partition J contains a loop starting from J
h̄

through all the sets Jk with k 2 N , and contains one single arc from a set
Jk with k 2 N to J

h̄
.

We first show that the shortest admissible path from J
h̄
to itself is of length

m. Let J
h̄
Jp(2) . . . Jp(s)Jh̄ be such path with length s+1 < m, there are two

1
If not, we prove the result for such smallest odd number greater than 1 and obtain

the proposition.
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cases. If s is odd, by Lemma 3.5 there exists x 2 J
h̄
such that T s(x) = x,

but s < m� 1 and we have a contradiction by the choice of m. If s is even,
we can consider the admissible path J

h̄
Jp(2) . . . Jp(s)Jh̄Jh̄ which is of length

s + 2 and gives, by Lemma 3.5, the existence of a periodic point of period
s+ 1 < m. Again we have a contradiction by the choice of m.

Let J
h̄
Jp(2) . . . Jp(m�1)Jh̄ be the shortest admissible path from J

h̄
to itself.

All Jk appear at most once in this path, indeed if one Jk appears twice, we
can construct a shorter admissible path from J

h̄
to itself. It follows that this

path is actually a loop starting from J
h̄
through all the sets Jk with k 2 N .

The same argument shows that the T -graph of the partition J contains one
single arc from a set Jk with k 2 N to J

h̄
.

Let us now relabel the sets of the partition J by letting I1 := J
h̄
and

I2, . . . , Im�1 be chosen so that there exists an arc from Ik to Ik+1 for all
k 2 N .

Step 4. The map T admits periodic orbits of minimal period n for all n > m.
This follows from step 3 by applying Lemma 3.5 to the closed ammissible
path I1I2 . . . Im�1I1 . . . I1 of length n+ 1.

Step 5. For each odd k 2 N there exists an arc from Im�1 to Ik.
The statement is clearly true for m = 3. If m > 3 we show that the sets
Ik are ordered in [a, b] in a precise way. From step 3 we know that I1 T -
covers itself and I2, and no other set. So T (p

h̄
) = p

h̄+2 and T (p
h̄+1) = p

h̄
,

or T (p
h̄
) = p

h̄+1 and T (p
h̄+1) = p

h̄�1. In the first case I2 = [p
h̄+1, ph̄+2],

and since I2 T -covers only I3 we have I3 = [p
h̄�1, ph̄]. We can continue

repeating the argument to conclude that Im�1 = [pm�1, pm], and T (pm�1) =
p1, T (p1) = pm and T (pm) = p

h̄
. Since Ik with k odd are of the form

[ph, ph+1] with h < h̄, the thesis of the step follows.

Step 6. The map T admits periodic orbits of minimal period n for all even
n < m.
This follows from step 5 by applying Lemma 3.5 to the closed admissible
path of length n + 1 from Im�1 to itself of the form Im�1IjIj+1 . . . Im�1

where j = m� n is odd.

Theorem 3.8 (Sharkovsky). Let T : [a, b] ! [a, b] be a continuous map and
consider the following ordering on N

1 � 2 � 4 � 8 � · · · � 2n � 2n+1 � . . . 2n+15 � 2n+13 � . . .

· · · � 2n5 � 2n3 � · · · � 2 · 5 � 2 · 3 � . . . 7 � 5 � 3
(3.5)

If T admits a periodic orbit of minimal period m then it admits a periodic
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orbit of minimal period n for all n � m in the ordering (3.5).

Proof. If m is odd, the thesis follows from Proposition 3.7.
If m = 2 · m̃ with m̃ odd and T admits no periodic orbits with odd period,
then we can repeat the same argument of the proof of Proposition 3.7 up
to step 2. This shows that h̄ = m̃ and, in the T -graph of the partition
including the sets Jk with k 2 N , there exists an admissible path from the
set [pm̃, pm̃+1] to all the sets Jk with k 2 N . This implies that T admits
a fixed point. However there is no arc to [pm̃, pm̃+1] from a di↵erent set,
since otherwise by Lemma 3.5 we could find a periodic orbit of T with odd
period. It follows that T (pj) � pm̃+1 for all j  m̃ and T (pj)  pm̃ for all
j � m̃+1, so the points p1, . . . , pm̃ give a periodic orbit of period m̃ for T 2.
We can then repeat the argument for T 2 and find periodic orbits of T 2 with
period ñ for all ñ � m̃ in the ordering (3.5). The thesis for T follows.
If m = 2r · m̃ with r > 1, m̃ odd and T admits no periodic orbits with odd
period, then we do one step as in the previous case, and we are reduced to
the case m = 2r�1 ·m̃. So we can repeat the argument and obtain the thesis.
We remark that when m̃ = 1, we only obtain periodic orbits with period
powers of 2.
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3.3 Topological chaos

Definition 3.8. Let T : X ! X be a continuous map on a metric space X.
We say that T is chaotic in the sense of Devaney if there exists a compact
forward invariant set ⇤ ⇢ X such that:

(i) the set of periodic orbits is dense in ⇤;

(ii) T is topologically transitive on ⇤, that is for all open sets U, V ⇢ X
with non-empty intersection with ⇤, there exists n 2 N such that
Tn(U \ ⇤) \ (V \ ⇤) 6= ;;

(iii) T has sensitive dependence on initial conditions on ⇤, that is there
exists c > 0 such that for all x 2 ⇤ and all " > 0 one can find y 2
B"(x)\⇤ for which there exists n 2 N such that d(Tn(x), Tn(y)) > c.

Example 3.3. Show that the Symbolic dynamics of Example 1.8 is chaotic
in the sense of Devaney.

Remark 3.9. Conditions (i) and (ii) in Definition 3.8 imply (iii) (see [Ru17,
Thm 7.4]).

Definition 3.9. Let T : X ! X be a continuous map on a compact metric
space X. For n 2 N and " > 0, a set S ⇢ X is called (n, ")-separated if for
all x, y 2 S there exists k = 0, . . . , n such that d(T k(x), T k(y)) > ". Then
the quantity

htop(T ) := lim
"!0+

lim sup
n!1

1

n
log

⇣
max {#S : S is (n, ")-separated}

⌘

is well-defined and is called topological entropy of T .

Proposition 3.10. Let (X,T ) and (X̃, T̃ ) be two discrete-time continuous
dynamical systems on compact metric spaces, and assume that (X̃, T̃ ) is a
topological factor of (X,T ). Then htop(T )  htop(T̃ ). In particular, topolog-
ical entropy is invariant under topological conjugacy.

Example 3.4. Using Definition 3.9 and Proposition 3.10, show that: The
Symbolic dynamics has positive topological entropy; The Tent map of Ex-
ample 1.5 with s = 2, the Bernoulli map of Example 1.7, and the Logistic
map of Example 1.6 with � = 4 have topological entropy log 2; The rotations
of the circle of Example 1.4 have null topological entropy.

We now move to the case of maps of the interval. First, we give a simple
criterion to compute the topological entropy in a special case.
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Proposition 3.11. Let T : [a, b] ! [a, b] be a piecewise continuous mono-
tone map with respect to a partition J = {J1, . . . , JN} of the compact
interval [a, b] into closed subintervals. Assume that T (Ji) = [a, b] for all
i = 1, . . . , N . Then

htop(T ) = lim
k!1

1

k
log

⇣
#Fix(T k)

⌘
= logN .

We now introduce another notion of chaotic behaviour.

Definition 3.10. Let T : X ! X be a continuous map on a compact
interval X = [a, b]. We say that T has a horseshoe if there exists a closed
sub-interval J ✓ X which T -covers itself 2-times.

Proposition 3.12. Let T : X ! X be a continuous map on a compact
interval X = [a, b]. Then:

(i) if T has a horseshoe then has periodic orbits with minimal period n
for all n � 1;

(ii) if T has a periodic point with minimal odd period m > 1, then T 2 has
a horseshoe.

Proof. (i) Let J ✓ [a, b] be the closed interval which covers itself 2-times,
and let K1 and K2 be the open sub-intervals of J such that K1 \ K2 = ;
and T (ÑK1) = T (ÑK2) = J . We consider the T -graph of K1, K2, which is a
full graph on the indices {1, 2}.

Let K1 = (↵,�) and K2 = (� + ", �), there are two cases. If " > 0 or
" = 0 and � is not a fixed point, we apply Lemma 3.5 to the admissible
path K1K2K2K1 to find a periodic point of period 3 which is not fixed,
so it has minimal period 3 and we can apply Sharkovsky Theorem 3.8. If
" = 0 and � is a fixed point, then it follows that there exists � 2 (�, �) such
that T ([�, �]) = J , so we can repeat the argument with K1 = (↵,�) and
K3 = (�, �).

(ii) Let m be the smallest odd number for which T has a periodic orbit
of minimal period m, and let {p1, . . . , pm�1} be the points of the periodic
orbit in dynamical order, that is T (pi) = pi+1 for all i = 1, . . . ,m � 2, and
T (pm�1) = p1. By Step 5 in the proof of Proposition 3.7, the point of the
periodic orbit are ordered in [a, b] as

a  pm�1 < pm�3 < · · · < p5 < p3 < p1 < p2 < p4 < · · · < pm�4 < pm�2  b

or specularly. In the first case, we find T (p1, p2) = (p3, p2) so that there
exists � 2 (p1, p2) such that T (�) = p1, and hence T 2(�) = p2. We now show
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that J = [pm�1, p2] T 2-covers itself 2-times. Let K1 = (pm�1, pm�3), then
T 2(pm�1) = p2 and T 2(pm�3) = pm�1, hence T 2(ÑK1) = J . If we also let
K2 = (pm�3, �), then as shown before again T 2(ÑK2) = J . Since K1\K2 = ;,
we are done.

Definition 3.11. Let T : X ! X be a continuous map on a compact
interval X = [a, b]. We say that T is chaotic in the horseshoe sense if there
exists n 2 N such that Tn has a horseshoe.

Theorem 3.13 ([Ru17], Thm 4.58 and Thm 7.3). Let T : X ! X be a
continuous map on a compact interval X = [a, b]. Then the following are
equivalent:

(i) T is chaotic in the sense of Devaney;

(ii) htop(T ) > 0;

(iii) T is chaotic in the horseshoe sense;

(iv) T has a periodic point with minimal period not a power of 2.

Example 3.5. The Tent map Ts of Example 1.5 is chaotic for all s > 1. If s �p
2 one shows that T 2

s has a horseshoe by using the interval Js = [ 1
s+1 ,

s

s+1 ],

since 1
2 2 Js and T 2(12)  1

s+1 , whereas T 2( 1
s+1) = T 2( s

s+1) = s

s+1 . If

s 2 (1,
p
2), the result follows by observing that there exist intervals J1 and

J2 on which T 2
s is equal to Ts2 after rescaling.

Remark 3.14. For a C1+↵ di↵eomorphism of a manifold, positive topological
entropy is equivalent to existence of a Smale horseshoe [Ka80].


